A Database for Triticeae and Avena (2024)

Catalog of gene symbols for wheat: 1998 supplement.

A Database for Triticeae and Avena (1)

VI. CATALOGUE OF GENE SYMBOLS FOR WHEAT: 1998 Supplement

R.A. McIntosh*, G.E. Hart**, K.M. Devos***, J. Rogers****, and M.D.Gale***.

* Plant Breeding Institute, The University of Sydney, 107 Cobbitty Rd.,Cobbitty, N.S.W., Australia, 2570.

** Department of Soil & Crop Sciences, Texas A&M University,College Station, Texas, USA, 77843.

*** John Innes Centre, Norwich Research Park, Colney, Norwich, Norfolk,NR4 7UH, UK.

**** Catedra de Genetica y Fitotecnia, Universidad Nacional del Centrode la Provincia de Buenos Aires, (7300) Azul, Argentina.

The most recent edition of the Catalogue {9441} appears in the Proceedingsof the 8th International Wheat Genetics Symposium held in Beijing, China,1993, pp. 1333-1500. Revised Guidelines for Nomenclature of Biochemical/MolecularLoci (including QTLs) in Wheat and Related Species were included with the1994 Supplement. Further proposals were included in the 1995 and 1996 Supplements.

This Supplement has been offered to the editors of Annual Wheat Newsletterand Wheat Information Service for inclusion in the respective journals.

As the Catalogue evolves, the co-ordinators do not always revise pastentries. Researchers and readers are encouraged to advise updatings anderrors to make the Catalogue more useful to others.

Revisions of and additions to 'Summary Table 1' of the 1995 Catalogueof Gene Symbols for Wheat:

Revise title of table to

'Symbols for wheat loci, including loci of known function, loci detectedwith 'known-function' DNA clones, and loci detected by PCR-amplificationof DNA using primers'.

Symbol Character
Add:
ACCc sets: Acetyl CoA carboxylase - cystolic form
ACCp sets: Acetyl CoA carboxylase - plastid form
Chr Hybrid chlorosis Type 1 gene in rye
GluTR set: Glutamyl-tRNA reductase
Mtase set: DNA (cytosine-5)-methyltransferase
Pina Puroindoline a
Pinb Puroindoline b
Rep set: DNA replication regulating gene
sc Seedling chlorosis
scs Nuclear-cytoplasmic compatability enhancer
Tria set: Pollen allergen encoding gene
Vgw Temperature-sensitive winter variegation
Vi Restorer for cytoplasmic male sterility, T. longissimum cytoplasm
Wcs Wheat cold-specific genes
Revise:
X Basic symbol for DNA markers of unknown function

Revision of 'Summary Table 2'

Add footnote c to 7DS:

Additions to Laboratory Designators list

crc Procunier, J.D.

Cereal Research Centre
Agriculture and Agri-Food Canada
195 Dafoe Road
Winnipeg, MB R3T 2M9
Canada

gwm Roder, M.S.

Institut fuer Pflanzengenetik und
Kulturpflanzenforschung (IPK)
Corrensstr. 3
06466 Gatersleben
FRG

ipk Borner, A.

Institut fuer Pflanzengenetik und
Kulturpflanzenforschung (IPK)
Corrensstr. 3
06466 Gatersleben
FRG

kuj Mori, Naoki

Laboratory of Plant Genetics
Faculty of Agriculture
Kobe University
1 Rokkodai-cho
Nada-ku
Kobe 657
Japan

mgb Blanco, A

Institute of Plant Breeding
University of Bari
via Amendola 165/A
I-70126
Bari, Italy
mta & Joudrier, P.
mtd
Unite de Biochimie et de
Biology Moleculaire
INRA
2, Place Pierre Viala
34060 Montpellier Cedex 01
France

ndsu Anderson, J A.

USDA-ARS Wheat Genetics
P.O. Box 646420
Washington State University
Pullman, WA 99164-6420 USA
sfr & Keller, B.
sfrp
Institute of Plant Biology
University of Zurich
Zollikerstrasse 107
CH-8008
Zurich, Switzerland

ucg Hasselkorn, R.

Department of Molecular Genetics
and Cell Biology
University of Chicago
Chicago, Illinois 60637 USA

wpg Feldman, M.

Department of Plant Genetics
Weizmann Institute of Science
Rehovot 76100
Israel

Aluminium tolerance

Alt1 {9869}. v: ET3 = Carazinho/4*Egret {9869}.

alt1 {9869}. v: ES3 = Carazinho/4*Egret {9869}.

Alt2 : Change the reference for the synonym 'AltBH'to {9835} and revise the previous Alt2 'ma:' entry to, 'Alt2- 1.1 cM - Xbcd1230-4D {9835}.'

Anthocyanin Pigmentation

3. Red/purple coleoptiles

Revise the previous Rc3 'ma:' entry to 'Rc3 (distal) -3 cM - Xpsr108 -7D {140}.'

4. Purple/red culm/straw/stem.

Revise the previous Pc1 'ma:' entry to 'Pc (proximal) -5.7 cM - Xpsr490(Ss1)-7B {9739}2.'


Blue Aleurone

The Ba allele in T. monococcum spp. aegilopoidesacc. G3116 determines a half-blue seed phenotype and is different from theallele present in Elytrigia pontica {96119} that determines a solid-blueseed phenotype. They are treated as different genes.

Ba1 {461}. [Ba {461}]. Derived from Elytrigiapontica (2n=70). 4B [4BS-4el2 {461}]. tr: UC66049B {425}.

Ba2. 4AmL {96119}3. dv: G3116 {96119}. ma:Ba2 cosegregated with Xcdo1387-4A, Xmwg677-4A and Xbcd1092-4A{96119}.

For review see {1210}.

Crossability with Rye, Hordeum and Aegilops spp.

Add {9848} to 'The kr genes influence crossability with H. vulgare.'

List of crossabilities {9801}.

DNA Markers

In the preamble, following 'b', substitute "Designates loci detectedby hybridization with DNA clones whose sequences are largely hom*ologouswith known genes in the EMBL database {9754}.' for 'Designates loci whosefunctions were identified through hom*ology with known genes in the EMBLdatabase {9754}.' Also, in the statement entitled 'STS's from RFLP clones:',revise the second sentence to 'The convention adopted is to add a 'p'to the laboratory designator.'

Revise all previously-listed 'WMS' primer desigations by inserting anopen space immediately after the basic symbol, e.g, change 'WMS30F/WMS30R'to 'WMS 30F/WMS 30R'.

Temporary DNA-marker designations are identified with an asterisk (*).

Replace 'Xwms' with 'Xgwm' throughout the DNA Markers section.

Group 1S

Add:

Xbcd98-1B,D {98139}.BCD98.(1A, 7A,D).
Xcdo534-1B.1,.2 {98139}.[cdo534a,b {98139}].CDO534.(6A, 6D, 7A).
Xfba8-1D {98105}.FBA008.(2A, 3B, 4B, 6A, 7D).
Xfba26-1A [{98105}].[Xfba26b-1A {98105}].FBA026.(6D).
Xfba250-1D {98105}.FBA250.
Xfba285-1A [{98105}].FBA285.
Xfba298-1A {98105}.FBA298.
Xfba299-1A {98105}.FBA299.
Xfba383-1D [{98105}].[Xfba383a-1D {98105}].FBA383.
Xfba393-1A [{98105}].FBA393.(5B,D).
Xfbb196-1A,D [{98105}].[Xfbb196b-1A, Xfbb196a-1D{98105}].FBB196.
Xfbb234-1B {98105}.FBB234.
Xfbb250-1D [{98105}].[Xfbb250a-1D {98105}].FBB250.
Xfbb260-1B,D [{98105}].[Xfbb260a-1B, Xfbb260b-1D {98105}].FBB260.
Xglk558-1D {594,98105}.pTag558.(2B,D).
Note: The arm location of Xglk558-1D was not reported in {594}.
Xgwm106-1D [{98119}].WMS 106F/WMS 106R.
Xgwm164-1A [{98119}].WMS 164F/WMS 164R.
XksuD14-1B.1,.2,.3{98139}.[ksud14a,b,c {98139}].pTtksuD14.
Xmta14(Gli-1) {98105}.MTA14 {98129}.
Xmtd161-1B,D [{98105}].[Xmtd161a-1B, Xmtd161b-1D {98105}].MTD161 {98129}.
Xmwg36-1A,B,D {98139}.MWG36.
XNor9 {98134}.[Nor9 {98134}].pTa71.
XpsrX-1A,B,D {98140}.PSRX.
Xsfr1(Lrk10)-1A [{98102}].[Lrk10 {98102}].Lrk10.
Xsfrp1(Lrk10)-1A [{98106}].[STSLrk10-6 {98106}].Lrk10D1/Lrk10D2.
Xutv10(Glu-3)-1B [{98150}].UTV7F/UTV10R.
Xutv17(Glu-3)-1B [{98151}].UTV17F/UTV7R.

Revise:

  • Xbcd98-1A.2; delete '5A' and add '1B,D, 7A' to the last column.
  • Xbcd1434; add '-1B {98139},[{98105}]' in the first column, '[bcd1434 {98139}, Xbcd1434b-1B {98105}', in the second column and '(2B)' in the last column.
  • Xcdo99; add '-1B {98105}' in the first column.
  • Xcdo618-1B {9666}; add 'Xcdo618-1A,D {98139}' in the first column.
  • Xcdo658-1A {9668}; add 'Xcdo658-1B,D {98139}1' in the first column.
  • Xcdo1173-1A {9668}; 1B {9666}1; add 'Xcdo1173-1D {98139}1' in the first column.
  • Xcdo1188-1A {9668}; add 'Xcdo1188-1B,D {98139}' in the first column.
  • Xgwm30; add '(2D)' in the last column.
  • XksuE19-1B,D; add '-1A [{98105}],{98139}' in the first column and '[XksuE19b-1A {98105}].' in the second column.
  • XksuF42-1B.1,.2.; add 'XksuF43-1A,D {98139}' in the first column.
  • Xwg789-1A {9668}, 1D {9666}; add 'Xwg789-1B {98139}' in the first column.

Group 1L

Add:

Xbcd310-1B {98139}.BCD310.(7B).
Xcdo844-1A {98139}.[cdo844 {98139}].CDO844.
Xcmwg649 {98154}2.cMWG649 {96109}.(2A).
Xcmwg701-1A .1,.2 {98154}2.cMWG701 {96109}.(5A).
Xfba34-1B.1,.2 [{98105}].[Xfba34a-1B, Xfba34b-1B {98105}].FBA034.
Xfba92-1A {98105}.FBA092.
Xfba177-1B [{98105}].[Xfba177a-1B {98105}].FBA177.(5A,4B,D).
Xfba178-1B [{98105}].[Xfba178b-1B {98105}].FBA178.(2A).
Xfba234-1A {98105}.FBA234.(6A, 7A).
Xfba266-1A.1,.2 [{98105}].[Xfba266a-1A, Xfba266b-1A {98105}].FBA266.
Xfba309-1B [{98105}].FBA309.
Xfba316-1A {98105}.FBA316.
Xfbb35-1B {98105}.FBB035.
Xfbb180-1B [{98105}].[Xfbb180a-1B {98105}].FBB180.
Xfbb255-1A,B [{98105}].[Xfbb255c-1A, Xfbb255a-1B {98105}].FBB255.(4B, 6A).
Xglk163-1B {594, 98139}.pTag163.
The arm location of Xglk163-1B was not reported in {594}.
Xglk431-1B {98105}.pTag431 {594}.(2D, 4B).
Xgwm135-1A [{98119}].WMS 135F/WMS 135R.
Xgwm337-1D [{98119}].WMS 337F/WMS 337R.
XksuA1-1B [{98105}].[XksuA1c-1B {98105}].pTtksuA1 {309}.(5B, 7D).
Xmta17(Glu-1) {98105}.MTA17 {98129}.

Revise:

  • Xabc160-1A {9668}; add 'Xabc160-1B,D {98139}' in the first column.
  • Xabg387-1A.1,.2 {96119}3; add 'Xabg387-1B,D {98139}1' in the first column.
  • Xbcd207; add '(5A)' in the last column.
  • Xbcd265-1A; add 'Xbcd265-1B,D {98139}1' in the first column.
  • Xbcd304-1A {9668}5; 1B {9666}1; add 'Xbcd304-1D {98139}1' in the first column.
  • Xbcd386-1A {9668}5; 1B {9666}1; add 'Xbcd386-1D {98139}1' in the first column.
  • Xbcd738-1A {9668}5; add 'Xbcd738-1B {98139}1' in the first column.
  • Xbcd921; add 'Xbcd921-1D {98139}1' in the first column.
  • Xbcd1562-1B; add 'Xbcd1562-1D {98139}' in the first column.
  • Xcsd19(Adh)-1A,B,D; change to 'Xcsc19(Adh)-1A,B,D '.
  • Xcdo393; add '-1B {98105}' in the first column.
  • Xcdo572-1A {9668}; add 'Xcdo572-1B,D {98139}' in the first column.
  • Xglk163; add '-1B {98105}' in the first column.
  • Xglk558; add 'Xglk558-1B {98139}' in the first column and '[tag588 {98139}.' in the second column.
  • XksuE3; add '(2B, 3AL, 3BS, 6AS, 6DL)' and delete '(3A, 6A)' in the last column.
  • XksuE11; add 'XksuE11-1D {98139}' in the first column.
  • XksuG30; add '(3B, 5A)' in the last column.
  • XksuH14-1A; add 'XksuH14-1B,D {98139}' in the first column.
  • Xmwg710-1A [{9668}]; add 'Xmwg710-1B,D {98139}' in the first column.
  • Xwg241; add 'Xwg241-1B {98139}' in the first column.
  • Xwg605-1A {9666},{9668}, 1B {9666}; add 'Xwg605-1D {98139}' in the first column.

Group 1

Note:
The following markers was moved to 1S.
Xglk558
The following marker was moved to 1L.
Xglk163-1B

Add:

Xgwm232-1D [{98119}]. WMS 232F/WMS 232R.
Xipk2(Rep)-1A,B,D [{98101}]. [XRep {98101}]. Rep.

Group 2S

Add:

Xbcd1434-2B [{98105}].[Xbcd1434a-2B {98105}].BCD1434 {96124}.(1A,B,D).
Xfbb75-2B.1 {9652}[{98105}].[Xfbb75b-2B {98105}].FBB075.(2BL).
The arm location of Xfbb75-2B was not reported in {9652}.
Xfbb171-2B {98105}.FBB171.
Xfbb185-2B {98105}.FBB185.(3B).
Xfbb353-2A {9652}, -2B {98105}.FBB353.(3A).
The arm location of Xfbb353-2A was not reported in {9652}.
Xgwm55-2B {98121}.WMS 55F/WMS 55R.
Xgwm71-2A.1 [{98121}].[gwm71a {98121}].WMS 71F/WMS 71R.
Xgwm71-2A.2 [{98121}].[gwm71b {98121}].WMS 71F/WMS 71R.
Xgwm102-2D {98121}.WMS 102F/WMS 102R.
Xgwm129-2B {98121}.WMS 129F/WMS 129R.
Xgwm148-2B {98121}.WMS 148F/WMS 148R.
Xgwm210-2D {98121}.WMS 210F/WMS 210R.
Xgwm249-2D {98121}.WMS 249F/WMS 249R.
Xgwm257-2B {98121}.WMS 257F/WMS 257R.
Xgwm261-2D {98118}.WMS 261F/WMS 261R.
Xgwm296-2A,D [{98121}].[gwm296a,b {98121}].WMS 296F/WMS 296R.
Xgwm319-2B {98121}.WMS 319F/WMS 319R.
Xgwm339-2A {98121}.WMS 339F/WMS 339R.
Xgwm372-2A {98121}.WMS 372F/WMS 372R.
Xgwm374-2B {98121}.WMS 374F/WMS 374R.
Xgwm410-2B {98121}.WMS 410F/WMS 410R.
Xgwm425-2A {98121}.WMS 425F/WMS 425R.
Xgwm429-2B {98121}.WMS 429F/WMS 429R.
Xgwm455-2D {98121}.WMS 455F/WMS 455R.
Xgwm484-2D {98121}.WMS 484F/WMS 484R.
Xgwm512-2A {98121}.WMS 512F/WMS 512R.
Xgwm515-2D {98121}.WMS 515F/WMS 515R.
Xgwm636-2A {98121}.WMS 636F/WMS 636R.
Xgwm95-2A [{98119}].WMS 95F/WMS 95R.
Xgwm148-2B [{98119}].WMS 148F/WMS 148R.
Xgwm261-2D [{98119}].WMS 261F/WMS 261R.

Revise:

  • Xfba65; add '(5B)' in the last column.
  • Xfba83; add '-2B {98105}' in the first column.
  • Xfba88; add '-2A {98105}' in the first column.
  • Xfba178; add '(1B)' in the last column.
  • Xfbb61; add '(6B)' in the last column.
  • Xfbb62-2B; delete reference '9641'.
  • XksuD18; add '-2B {98105}' in the first column, and add '(7B)' in the last column.

Group 2L

Add:

Xcdo770-2A {98105}.CDO770 {96124}.
Xcrc4-2B {98131}.[Xcrc4.2 {98131}].CRC4F/CRC4R.
Xfba71-2A [{98105}].[Xfba71b-2A {98105}].FBA071.(7A).
Xfbb75-2B.2 [{98105}].[Xfbb75a-2B {98105}].FBB075.(2BS).
Xfbb278-2B [{98105}].[Xfbb278a-2B {98105}].FBB278.(7A).
Xfbb324-2B [{98105}].[Xfbb324a-2B {98105}].FBB324.(3D, 7B).
Xglk554-2A {594,98105},B {594}.[Xglk554a,c {594}].pTag554.(5B).
The arm locations of Xglk554-2A,B were not reported in {594}.
Xglk594-2A [{98105}],2B {594}[{98105}].[Xglk594a-2A, Xglk594b-2B {98105}].pTag594.
The arm location of Xglk594-2B was not reported in {594}.
Xgwm16-2B {98121}.WMS 16F/WMS 16R.
Xgwm47-2B {9736,98121}.WMS 47F/WMS 47R.
Xgwm55-2B {98121}.WMS 55F/WMS 55R.
Xgwm120-2B [{98119}].WMS 120F/WMS 120R.
Xgwm157-2D [{98119}].WMS 157F/WMS 157R.
Xgwm189-2B [{98119}].WMS 189F/WMS 189R.
Xgwm191-2B {98121}.WMS 191F/WMS 191R.
Xgwm265-2A {98121}.WMS 265F/WMS 265R.
Xgwm294-2A [{98119}].WMS 294F/WMS 294R.
Xgwm301-2D {98121}.WMS 301F/WMS 310R.
Xgwm312-2A {98121}.WMS 312F/WMS 312R.
Xgwm328-2A {98121}.WMS 328F/WMS 328R.
Xgwm349-2D {98121}.WMS 349F/WMS 349R.
Xgwm356-2A {98121}.WMS 356F/WMS 356R.
Xgwm382-2A,D {98121}.WMS 382F/WMS 382R.
Xgwm388-2B {98121}.WMS 388F/WMS 388R.
Xgwm445-2A {98121}.WMS 445F/WMS 445R.
Xgwm501-2B {98121}.WMS 501F/WMS 501R.
Xgwm526-2B {98121}.WMS 526F/WMS 526R.
Xgwm539-2D {98121}.WMS 539F/WMS 539R.
Xgwm558-2A {98121}.WMS 558F/WMS 558R.
Xgwm608-2D {98121}.WMS 608F/WMS 608R.
Xgwm619-2B {98121}.WMS 619F/WMS 619R.

Revise:

  • Xabc153-2A; add '2B.1, .2 {98131}' in the first column and add '[Xcrc153-2B.1, Xcrc153- 2B.2{98131}].' in second column
  • Xcmwg649-2A; add '(1A).' in the last column.
  • Xfba8; add '(1D)' in the last column.
  • Xfba62-2B; delete reference '9641'.
  • Xfba359; add '(5A)' in the last column.
  • XksuD22; add '-2B {98105}' in the first column.
  • XksuE3; add '-2B [{98105}]' in the first column, add '[XksuE3c-2B {98105}].' in the second column, add '(3AL, 3BS, 6AS, 6DL)' in the last column and delete (3A, 6A) in the last column.
  • XksuF2; add '(7B)' in the last column.
  • XksuF43; add '1B,D' in the last column.
  • XksuG30; add '(3B, 5A)' in the last column.
  • Xfba61; add '-2A [{98105}]' in the first column and '[Xfba61a-2A {98105}].' in the second column.
  • Xfba62; add '-2A [{98105}]' in the first column and '[Xfba62a-2A {98105}].' in the second column.
  • Xfba64; add '-2A,B [{98105}]' in the first column and '[Xfba64a-2A, Xfba64b-2B {98105}].' in the second column.
  • Xfba209-2D.1; add '-2B.1 [{98105}]' in the first column and '[Xfba209a-2B {98105}].' in the second column.
  • Xfba209-2D.2; add '-2A, B.2 [{98105}]' in the first column and '[Xfba209b-2A, Xfba209c-2B {98105}].' in the second column.
  • Xfba314; add '-2B [{98105}]' in the first column and '[Xfba314a-2B {98105}].' in the second column.
  • Xfba345; add '-2A [{98105}]' in the first column and '[Xfba345b-2A {98105}].' in the second column.
  • Xgwm30; add '(1A)' in the last column.
  • XksuF1; add '-2B [{98105}]' in the first column and '[XksuF1b-2b {98105}].' in the second column.
  • Xwg645; add '-2B [{98105}]' in the first column and '[Xwg645a-2B {98105}].' in the second column.

Group 2

Note: The following markers were moved to the 2S group.
Xfbb75, Xfbb353
Note: The following markers were moved to the 2L group.
Xglk554, Xglk594, Xgwm47

Add:

Xglk370-2B {594},2D {98125}.pTag370.(4A).
Xglk744-2A,B,D {98125}.pTag744 {98126}.(6B).
Xkuj64-2A,B,D {98125}.pTac64 {98127}.
Xucg1(ACCp}-2A,2B,2D {9847}.UCG1 {9847}.

Revise:

  • Xglk407; add '(5A)' in the last column.
  • Xglk431; add '(1B)' in the last column.
  • Xglk653; add '-2D {98125}' in the first column.
  • XksuF36; add '(4A)' in the last column.
  • XksuG49; add '(4A, 6A)' in the last column.

Group 3S

Add:

Xfba189-3B [{98105}].[Xfba189b-3B {98105}].FBA189.(3BL).
Xfbb156-3B [{98105}].[Xfbb156a-3B {98105}].FBB156.(3BL, 5D, 6B, 7A).
Xglk538-3B,D.1 [{98105}].[Xglk538a-3B, Xglk538b-3D {98105}].pTag538 {594}.
Xglk538-3D.2 [{98105}].[Xglk538c-3D {98105}].pTag538 {594}.
Xgwm161-3D [{98119}].WMS 161F/WMS 161R.
Xgwm218-3A [{98119}].WMS 218F/WMS 218R
XksuE3-3B [{98105}].[XksuE3b-3B {98105}].pTtksuE3 {309}.(1A, 2A,B,D, 3AL,4A, 6AS, 6DL, 7A,D).
XksuG30-3B [{98105}].[XksuG30a-3B {98105}].pTtksuG30 {309}.(1A, 2D, 4A, 5A, 6A,B).
Xmtd120-3D [{98105}].MTD120 {98129}.

Revise:

  • Xbcd15; add '(4B)' in the last column.
  • Xfba127; add '(6B)' in the last column.
  • Xfbb24; add '(4B)' in the last column.
  • Xfbb185; add '(2B)' in the last column.
  • XksuE2; add '(5A)' in the last column.

Group 3L

Add:

Xbcd358-3A {98105}.BCD358 {96124}.
Xcdo113-3A {98105}.CDO113 {96124}.
Xfba189-3B [{98105}].[Xfba189a-3B {98105}].FBA189. (3BS).
Xgwm52-3D [{98119}].WMS 52F/WMS 52R.
Xgwm108-3B [{98119}].WMS 108F/WMS 108R.
Xgwm340-3B [{98119}]. WMS 340F/WMS 340R.

Revise:

  • Xabg387; add '1B,D' in the last column.
  • Xfba8; add'(1D)' in the last column.
  • Xfba213; add '-3D {98105}' in the first column.
  • Xfba214; add '-3D {98105}' in the first column.
  • Xfba242; add '-3A {98105}' in the first column.
  • Xfbb156; add '(3BS, 6B)' in the last column.
  • Xfbb353; add '(2B)' in the last column.
  • XksuE2; add '(5A)' in the last column.
  • XksuE3; add '(2B, 3BS, 6AS, 6DL)' and delete '(6A)' in the last column.

Group 3

Add:

Xgwm144-3B [{98119}].WMS 144F/WMS 144R.
Xkuj72-3B,D {98125}. pTac72 {98127}.

Revise:

  • Xfbb324; add '(2B,7B)' in the last column.
  • Xglk221; add '-3D {98125}' in the first column.
  • Xglk577; add '-3B,D {98125}' in the first column.
  • Xucg(ACCc)-3A,3B,3D.1,.2,.3 {9846}. Clone name not stated in {9846}.

Group 4S (4AL:4BS:4DS)
Add:

Xglk556-4B {594,98105}.pTag556.
Note: The arm location of Xglk556-4B was not reported in {594}.
Xgwm165-4B [{98119}].WMS 165F/WMS 165R.
Xgwm160-4A [{98119}].WMS 160F/WMS 160R.
Xwg909-4B {98105}.WG909 {96124}.

Revise:

  • Xabg387; add '1B,D' in the last column.
  • Xbcd265; add '1B,D' in the last column.
  • Xfba8; add '(1D, 6A, 7D)' in the last column.
  • XksuE3; add '(2B, 3AL, 3BS, 6AS, 6DL)' and delete '(3A, 6A)' in the last column.
  • XksuG12; add '(6B)' in the last column.
  • Xmwg634; add '-4B {98117}' in the first column.

Group 4L (4AS:4BL:4DL)
Add:

Xfba137-4A {98105}.FBA137.(5D).
Xfbb120-4A {98105}.FBB120.
Xfbb248-4A {98105}.FBB248.
Xgwm149-4B {98117}.WMS 149F/WMS 149R.
Xgwm165-4D {98117}.WMS 165F/WMS 165R.
Xgwm375-4B [{98119}].WMS 375F/WMS 375R.

Note: The following markers were moved to the 5AL:4BL:4DL group
Xfba41.

4AmL
Revise:

  • XksuG30; add '(3B, 5A)' in the last column.

Group 5AL:4BL:4DL

Add:

Xfba1-4B {98105}.FBA001.(6D).
Xfbb24-4B [{98105}].[Xfbb24b-4B {98105}].FBB024.(3B).
Xfba41-4B {9657,98105}.FBA041.
Xgwm179-5A,4D {9839}.WMS 179F/WMS 179R.
Xgwm291-5A {9839}.WMS 291F/WMS 291R.
Xgwm410-5A {9839}.WMS 410F/WMS 410R.
Xmwg616-5A {9839}.MWG616 {96109}.
Xipk1(Tria)-4B, 4D, 5A [{98101}].[XTria {98101}].Tri a III {98103}.
XksuG30-5A [{98105}].[XksuG30b-5A {98105}].pTtksuG30 {309}.(1A, 2D, 3B, 4A, 6A,B).

Revise:

  • Xbcd15; add '-4B [{98105}]' in the first column and '[Xbcd15a-4B {98105}].' in the second column.
  • Xfba177; add '-5A [{98105}]' in the first column, '[Xfba177b-5A {98105}].' in the second column, and '(1B)' in the last column.
  • Xfbb255; add '(1A,B, 6A)' in the last column.
  • XksuE2; add '-5A {98105}' in the first column.

Group 4
Add:

Xglk575-4B,D {98125}.pTag575 {98126}.
Xgwm149-4B [{9839}].WMS 149F/WMS 149R.
Xgwm198-4A [{98119}].WMS 198F/WMS 198R.

Revise:

  • Xfba43; add '(5A)' in the last column.
  • Xfba359; add '(5A)' in the last column.
  • Xglk370; add '(2D)' in the last column.
  • Xglk431; add '(1B)' in the last column.
  • Xglk694; add '-4D {98125}' in the first column.
  • XksuD18; add '(2B, 7B)' in the last column.
  • XksuF43;add '1B,D' in the last column.

Group 5S
Add:

Xbcd207-5A {98105}.BCD207 {96124}.(1A).
Xfbb238-5B {98105},5D {9657}.FBB238.(7A).
Note: The arm location of Xfbb238-5D was not reported in {9657}.
Xglk407-5A {98105}.pTag407 {594}.(2B).
Xglk424-5A {594,98105}.pTag424.
Note : the arm location of Xglk424-5A was not reported in {594}.
Xgwm129-5A [{98119}].WMS 129F/WMS 129R.
Xgwm234-5B [{98119}].WMS 234F/WMS 234R.
Xgwm304-5A [{98119}].WMS 304F/WMS 304R.
Xmtd116-5B {98105}.MTD116 {98129}.

Revise:

  • Xfba342; add '-2A {98105}' in the first column.
  • Xfba393; add '(1A)' in the last column.
  • XksuA3; add '(7B)' in the last column.

Add:

XNor 10 {98134}3.[Nor10 {98134}].pTa71.
Xfba43-5A {98105}.FBA043.(4A).
Xfba65-5B {98105}.FBA065.(2D, 4A, 6A, 7A).
Xfba359-5A {98105}.FBA359.(2B, 4A, 6B).
Xfbb292-5B {98105}.FBB292.
Xglk510-5A [{594,98105}],5B [{594,98105}].[Xglk510a {594,98105}, Xglk510b {594,98105}].pTag510.
Note: The arm locations of Xglk510-5A,B were not reported in{594}.
Xgwm118-5B [{98119}].WMS 118F/WMS 118R.
Xgwm129-5A {9839}.WMS 129F/WMS 129R.
Xgwm174-5D [{98119].WMS 174F/WMS 174R.
Xgwm186-5A {9839}.WMS 186F/WMS 186R.
Xgwm272-5D [{98119}].WMS 272F/WMS 272R.
Xtam75-5A {179,98105},5B,D {179}.TAM75.
Note: The arm locations of Xtam75-5A,B,D were not reportedin {179}.
Xwpg15-5B [{98108}].[WPG15 {98108}].WPG15.
Xwpg35-5B [{98108}].[WPG35 {98108}].WPG35.
Xwpg79-5B [{98108}].[WPG79 {98108}].WPG79.
Xwpg90-5B [{98108}].[WPG90 {98108}].WPG90.
Xwpg176-5B [{98108}].[WPG176 {98108}].WPG176.
Xwpgp90-5B [{98109}].WPG90F/WPG90R.

Revise:

  • Xabg387 add '1B,D' in the last column.
  • Xbcd265; add '1B,D' in the last column.
  • Xfba127; add '(6B)' in the last column.
  • Xfbb156; add (3BS, 3BL, 6B)' and delete '(3B)' in the last column.
  • XksuA1; add '(1B)' in the last column.
  • XksuG12; add '(6B)' in the last column.
  • Xwg909; add '(4B)' in the last column.

Group 5
Note: The following markers were moved to the 5S group.
Xglk424

Note: The following markers were moved to the 5L group.
Xtam75, Xglk510

Add:

Xfba259-5B {98107}.FBA259.(7B).
Xmta9-5D {98107}.MTA9 {98129}.

Revise:

  • Xfba137; add '(4A)' in the last column.
  • Xglk251; add '-5B {98125}' in the first column.
  • Xglk510; add '-5D {98125}' in the first column.
  • Xglk587; add '-5B {98125}' in the first column.
  • XksuF43; add '1B,D' in the last column.

Group 6
Note: The following markers were moved to 6S.
Xfbb95

Add:

Xfbb61-6B {98105}.FBB061.(2A).
Xfbb156-6B [{98105}]. [Xfbb156b-6B {98105}].FBB156.(3BS, 3BL, 5D, 7A).
Xgwm325-6D [{98119}].WMS 325F/WMS 325R.
Xkuj77-6A,B,D {98125}. pTac77 {98127}.

Revise:

  • Xcdo534-6B; add '1B' in the last column.
  • Xglk744; add '(2A,B,D)' in the last column.
  • Substitute'XksuE19-6D {309}4' for 'XksuF19-6D {309}4.
  • XksuF36; add '(4A)' in the last column.

Group 7S
Add:

Xfbb53-7B {98105}.FBB053.
Xfbb324-7B [{98105}].[Xfbb324b-7b {98105}].FBB324.(2B, 3D).
Xgwm60-7A [{98119}].WMS 60F/WMS 60R.
Xgwm68-7B [{98119}].WMS 68F/WMS 68R.
Xgwm130-7D [{98119}].WMS 130F/WMS 130R.
Xgwm260-7A [{98119}].WMS 260F/WMS 260R.
Xgwm297-7B [{98119}].WMS 297F/WMS 297R.
XksuD18-7B [{98105}].[XksuD18a-7B {98105}]. pTtksuD18 {309}.(2A,B,D, 4D).

Revise:

  • Xbcd98-7B,D; add '1B,D' to the last column.
  • Xbcd310-7B; add '(1B).' in the last column.
  • Xcdo534-7A; add '1B' in the last column.
  • Xglk61-7A; substitute '(7BL).' for '(7DL).' in the last column
  • XksuA1; Replace 'XksuA1-1D {309}' with 'XksuA1-7D {309}', and add '(1B, 5B)' in the last column.

Group 7AS:4AL:7DS

Add:

XksuF36-4A {98105}.pTtksuF36.(2D, 6D).
XksuG49-4A [{98105}].[XksuG49c-4A {98105}].pTtksuG49.(2D, 6A).

Revise:

  • Xbcd1438; add '-7A {98105}' in the first column.
  • Xfba8; add '(1D)' in the last column.
  • Xfba65; add '(5B)' in the last column.
  • Xfba127; add '(6B)' in the last column.
  • Xfba231; add '-7A {98105}' in the first column.
  • Xfba243; add '-7A,4A [{98105}]' in the first column, and '[Xfba243a-7A, Xfba243b-4A {98105}].' in the second column.
  • Xfbb156; add '(3BS, 3BL, 6B)' and delete '(3B)' in the last column.
  • Xfbb278; add '(2B)' in the last column.
  • Xmwg710; add '1B,D' in the last column.

Group 7L
Add:

Xfba71-7A [{98105}].[Xfba71a-7A {98105}].FBA071.(2A).
Xfbb222-7A {98105}.FBB222.(6D).
Xfbb366-7A,D [{98105}].[Xfbb366a-7A, Xfbb366b-7D {98105}].FBB366.
XGlu-7A [{98154}]3.pTdUCD1 {9658}.
XksuA1-7D [{98105}].[XksuA1b-7D {98105}].pTtksuA1 {309}.(1B, 5B).
XksuA3-7B {98105}.pTtksuA3 {309}.(5D).
XksuF2-7B {98105}.pTtksuF2 {309}.(2A,D).
Xtam51-7A {179,98105}.TAM51.(4A,B).
Note: The arm location of Xtam51-7A was not reported in {179}.
Xwg232-7A [{98105}].[Xwg232a-7A {98105}].WG232 {96124}.(1A, 4A, 5A).

Revise:

  • Xfba234; add '(1A)' in the last column.
  • Xfba259; add '(5B)' in the last column.
  • Xfba382; add '-7B {98105}' in the first column.
  • Xfbb79; add '-7A {98105}' in the first column.
  • Xfbb238; add '(5B)' in the last column.
  • XksuE3; add '(2B, 3AL, 3BS, 6AS, 6DL)' and delete '(3A, 6A)' in the last column.
  • XksuG12; add '-7A [{98105}]' in the first column, '[XksuG12b-7A {98105}].' in the second column, and '(6B)' in the last column.
  • Xglk478; add '7A [{98105}]' in the first column, and '[Xglk478a-7A {98105}].' in the second column.
  • Xpsr311-7A,B,D; change reference from '1168' to '869'.

Group 7
Add:

Xipk3(Mtase}-7A,B,D [{98101}].[XMtase {98101}].Mtase.
XSbeI-7A,B,D *{98145}. wSBE I-D2 clone 7.8.

Revise:

  • Xglk549; add '-7A,B {98125}' in the first column and '(1A)' in the last column.


Gametocidal Genes

1. Gametocidal activity


Revised to:
Gc1-B1a {9849}.Gc1a {1084}, Gc1 {1081}.2B {1084}. i: CS*8/Aegilops speltoides subsp.aucheri {1081}.
Gc1-B1b {9849}.Gc1b {1084}.2B {1084}. i: CS*8/Ae. speltoides subsp. ligustica {1084}.
Gc1-Sl1 {9849}.Gc-S13 {9849}.2S^1 {9850}.ad: CS/Ae. sharonensis {9850}.
Gc2-Sl1a {9849}.Gc-S11 {9849}.4S^1{9851}.ad: CS/Ae. longissima {9851}.
Gc2-Sl1b {9849}.Gc-S12 {9849}.4S^1 {9852}.ad: CS/Ae. sharonensis {9852}.
Gc3-C1 {9849}.Gc-C {9849}.3C {9853}.ad: CS/Ae. triuncialis {9854}.


Gc1-B1a, Gc1-B1b and Gc1-S1, classified in the same functionalgroup, are hypostatic to the genes Gc2-S11a and Gc2-S11b.Gc3-C1 does not interact with the Gc genes in the other twogroups. In addition to these genes, chromosomes carrying gametocidal genesoccur in Ae. caudata {9855} and Ae. cylindrica {9856} andother strains of Ae. longissima and Ae. sharonensis {9857,9858}.

Genes with gametocidal activity (Sd1 {1211} and Sd2 {9868})in wheat are present in hom*oeologous group 7 chromosomes of Thinopyrumelongatum {471,1211}.

Sd1 {1211}.7D {1211}.v: Agatha Sd2 {1211,9868}.
Sd2 {9868}.7BL {9867}.v: 88M22-149 {9867,9868}.

In the presence of both Sd1 and Sd2, Lr19 is transmittedpreferentially in heterozygotes, the degree of distortion being determinedby genetic background. In heterozygotes with the same background, and inthe presence of only Sd2, Lr19 shows strong self-elimination.Based on these results, it seems likely that the Sears' translocation 7D-7Ag#7does not carry Sd1 {660}.

Glaucousness
Add:
Orthology amonggs1, gs6, gs8 of barley (2HS){96109}, wa1 ofrye (7RL){9837} and gl2 of maize {98114} was indicated in {9837}.

W3I [{98154}].I3-W {98154}.1BL {98154}.tv: T. turgidum var. dicoccoides.

Glume Colour

1. Red (brown/bronze)
Rg3 :

Add '{9862}' to symbol and chromosome location referencesand add 'v: L'govskaya-47 {9861}.'
Move paragraph beginning 'The majority ...' to top and add 'The 1A gene,Rg3, was eventially identified linked to Gli-A1 {9861} andshown to cosegregate with Hg {9860}. A linkage order of Glu-A1- cent - Gli-A1 - Hg - Rg3 was reported {9860}.
Replace sentence 'Rg3 was ...' with '{9861} reports a further blockof 30 international varieties which, by inference from their Gli-A1alleles, probably also carry Rg3.'

2. Black
Revise the 'Bg' listing to the following:

'Bg {916}.1A {916}, 1AS {96119}.
s: CS*7/Indian 1A {916}.
dv: G1777, G3116 {96119}.
Bga {96119}.
[Bg(a) {96119}].dv: G1777.
Bgb {96119}.
[Bg(b) {96119}].dv: G3116.
bg {96119}.
dv: DV92, G2528.

Bga and Bgb and are dominant and cause a solid black glumeand a black line at the margins of the glume, respectively. bg isrecessive and causes a non-black glume.'

6. Chocolate Chaff
cc;
add '7BS {9701}' in the third column and 'PI349056 {9701}'in the fourth column.

Grain Hardness

Insert prior to listing of the Gsp-1 set:
'Friabilin consists mainly of puroindoline a and puroindoline b and, althoughboth soft and hard wheats possess them, distinction between the two texturaltypes depends upon the manner in which the friabilin binds to starch. SeePuroindoline (Proteins 5. VIII).'

Hairy/Pubesent Auricles

Pa {add 9884}.4BS {add 9884}.

Hairy glume

Add:

hg1 {9861}.v: Ulyanovkn {9861}; Pionerskaya {9861,98124}.

The likelihood of three alleles, hg (hairless), Hg1 (weaklyhairy) and Hg (very hairy), with hg1 being recessive to Hgand causing a short (weak) hairy phenotype, was mentioned in {9861}.'

Height

Ht
is the general symbol.

Reduced Height : GA-insensitive
Rht1, see Rht-B1b; Rht2, see RhtD1b; Rht3,see Rht-B1c; Rht10, see Rht-D1c .

Rht-1.

    Rht-B1 {9748}. 4B {87,284,736}, 4BS {69; see also 9748}. ma:tv: Gai1/Rht-B1b - 1.8cM - Xpsr622-4B{9739}.
    Rht-B1a {9748}. v: Tall wheats {9748}, e.g. Chinese Spring.
    Rht-B1b {9748}. [Rht1, Sd1 {12}]. Partially recessive {21}, recessive {242}, semi-dominant {289}. i: See {289, 279}. v: Frontier {1173}; Guardian {1173}; Selection 14-53/Burt, 5 {12}; Siete Cerros {285}; Wren {831}; WW15 {285}. Norin 10-Brevor, 14 Rht-D1b {12}; Oleson Rht-D1b {242}; Selection D6301 Rht-D1b {242}, Shortim Rht-D1b {178}. See {285, 287, 747}. tv: Cocorit 71 {87,286}; Creso {87,286,311}; Malavika {1042}; Mida {312}; Sansone {87}; Valgerado {87,286}; Valnova {312}; Valselva {312}.
    Rht-B1c {9748}. [Rht3, Sd3{402}]. Semi-dominant {736}. i: TomThumb/7* Kharkov//Lancer {736}. See {289}. v: Minister Dwarf {282}; Selection D6899 (Tom Thumb-Sonora 64/Tacuari) {242}; Tom Thumb {283}; Tom Pouce Blanc {285,1199}; Tom Pouce Barba Rouge {285,1199}; Topo; Tordo. ma: Xmwg634-4B (distal) - 30.6 cM - Rht-B1c - 11.9 cM Xpsr144 -4B (proximal) {98117}.
    Rht-B1d {9748}. [Rht1S {1175}]. Semi-dominant {1175,9748}. v: Saitama 27 {1175}. Occurs frequently in Italian and Yugoslavian wheats {1175}: Argelato, Centauro, Chiarano, Etruria, Farnesse, Gallo, Gemini, Lario, Pandas, Produttore, Orlandi, Orso, Salvia, Sprint, Strampelli.
    RhtB1e {9748}. [RhtKrasnodari 1 {9822}, Rht1(B-dw){9745}]. v: Krasnodari 1 (a spontaneous GA-insensitive offtype of Bezostaya 1 {9745}).
    Rht-B1f {9748}. [RhtT.aethiopicum {9748}]. Semi-dominant {9748}. tv: T. aethiopicum accessions W6824D {9748}, W6807C {9748}.


Rht-D1 {9748}. 4D {281,414,1132}, 4DS {698,896, see also 9748}.ma: Xpsr1871(Pki)-4D - 4cM - Rht-D1 - 6 cM - Xubc821(PhyA)-4D{9547}.

Rht-D1a {9748}. v: Tall wheats {9748}, e.g. Chinese Spring.
Rht-D1b {9748}. [Rht2, Sd2 {12}]. Partially recessive {21}, recessive {242}, semi-dominant {289}. 4D {281}, 4DS {698}. i: See {289, 279}. v: Combe {405}; Era {285}; Gaines Sib 2 {12}; Jaral {285}; Kite {831}; Maris Hobbit {281}; Pitic 62 {405}; Songlen {178}. Oleson Rht-B1b {242}; Norin 10-Brevor 14 Rht-B1b {12}; Selection D6301 Rht-B1b {242}.
Rht-D1c {9748}. [Rht10 {896}]. Dominant {89}. v: Ai-bian {1132,896}. ma: Xpsr921-4D (4DS) - 0.8 cM - Rht-D1c - 28 cM - Xgwm165-4D (4DL) {98117}.
Rht-D1d {9748}. [RhtAi-bian 1a {9749}]. Semi-dominant {9748}. v: Ai-bian 1a (spontaneous mutant of Ai-bian 1) {9749}.

Reduced Height : GA-sensitive
Rht4
{404}. Recessive. v: Burt ert 937, CI 15076{403,518}.
Rht5 {518}. v: Marfed ert 1, M1, CI 13988 {518,519,1168}.
Rht6 {519}. Recessive. v: Brevor {406}; Burt {406,519};Norin 10-Brevor 14 Rht-B1b Rht-D1b {406}.
Rht7 {1172}. 2A {1172}. v: Bersée Mutant A {1172};Bersée Mutant C {1172}.
Rht8. 2D {555,1171,1170}, 2DL. s: Capelle-Desprez*/Mara 2D {1171}. v: Novasadska Rana 1 {1176}; Sava {1171,279}, AkakomugiRht9 {840}; Mara Rht9 {840}. ma: Xgwm484-2D (proximal)- 19.9 cM - Rht8 - 0.6 cM - Xgwm261-2D (distal){98118}.
Rht9. 7BS {555,1171}. s: Capelle-Desprez*/Mara 5BS-7BS{1171}. v: Acciao {519}; Forlani {519}. Akakomugi Rht8 {1171};Mara Rht8 {1171}.
Rht11 {519}. v: Karlik 1 {519}.
Rht12 {519}. Dominant. 5A {1045,9531}. v: Karcagi 522M7K{522}. ma: Rht12 is located distally on 5AL cosegregatingwith the gene B1 and closely linked to N-Amy-A1 {9531}. Xgwm291-5A- 5.4cM - Rht12 {9839}.
Rht13 {519}. v: Magnif 41M1, CI 17689 {519}.
Rht14 {519}. v: Cp B 132 {94} = Castelporziano, PI347331 {519}.
Rht15 {519}. tv: Durox {519}.
Rht16 {519}. v: Edmore M1 {519}.
Rht17 {519}. v: Chris Mutant, CI 17241 {800}.
Rht18 {519}. tv: Icaro {519}.
Rht19 {519}. tv: Vic M1 {519}.
Rht20 {519}. v: Burt M860 {519}.
Börner et al. {9748} found no evidence of orthologous GA-insensitivegenes in rye, but reviewed evidence for orthologous GA-insensitive genes.

Herbicide Response

3. Chlortoluron Insensitivity

Add:

Su1.tv: B-35 {98104}.
su1.tv: B-7 {98104}.

Revise the previous 'ma:' entry to 'Xpsr312-6B - 5.3 cM - Su1- 6.8 cM - Xpsr477(Pgk2)-6B {96108}.'
Add to the 'ma:' section:
'Nor2 (6BS) - 2.7 cM - Su1 {98142} - 5.2 cM - Xpsr371-6B(6BL) {98104}.'

Hybrid Weakness

2. Hybrid Chlorosis Type 1

Add at end of section: 'A gene, Chr1, in rye produces chlorosissymptoms in hybrids with wheats possessing Ch2, such as C306, HD2939and NI5439 {9816}. Evidence for multiple alleles of Chr1 was alsopresented {9816}.'

Chr1 {9816}. dv: Cereal rye lines, EC179188 = WSP527A{9816};EC143825 = WSP506A {9816}; EC338685 = Blanco {9816}; others {9816}.

chr1 {9816}. dv: EC179178 {9816}; EC179185 SAR/SWPY5{9816}.

Lack of Ligules

Add:
'Evidence for orthology of lg1 and lg2 with lg of rice{96111}, lg1 of maize {98116}, li of barley {98111} and alof rye was presented in {9837}.'

Nuclear-Cytoplasmic Compatability Enhancers

scs {98138}.1A {98136}, 1AL {98137}.v: T. timopheevi {98138}.
ma: A number of completely linked RAPD makers were identified {9812}.

Asakura et al. {9812} used the symbol Ncc as a synonymn forscs, pointing out that the effects of the gene are not limited toa single species.

Nucleolar Organizer Regions
18S - 5.8S - 26S rRNA genes
Nor-B2; change 6BS reference '252' to '251'.

Osmoregulation

Revise the previous 'ma:' entry to 'Or (proximal in 7AS) - 13cM - Xpsr119-7A {9740}.'

Proteins

1. Grain Protein Content

Revise the previous QGpc.ndsu 'ma:' entries to include the completesymbol for each DNA marker, as follows:
'QPro.mgb-4B associated at P>=0.001 with Gai1 andXpsr622-4B {9739}2.
QPro.mgb-5A associated at P>=0.05 with Xpsr911-5A {9739}2.
QPro.mgb-6A.1 associated at P>=0.01 with Xpsr167-6Aand XksuG8-6A {9739}2.
QPro.mgb-6A.2 associated at P>=0.05 with Xmgb56-6A{9739}2.
QPro.mgb-7B associated at P>=0.01 with Xpsr490(Ss1)-7Band Pc {9739}2.'

2. Enzymes

III. Aminopeptidase

Amp-Mv2 {9836}. 4Mv {9836}su: H-93-33 {9836}.

.

VII. Esterase
Est-R6
; in the last column, add 'rye popn' after 'DS2 x RxL10'.
Est-R8; change the last-column entry to 'ad: CS/Imperial,CS/KingII.'

VIII. Glucosephosphate isomerase
Add comment: 'GPI zymogram phenotypes observed in Triticum and Aegilopsspecies were reported in {98147, 98148}.'

XV. Phosphogluconate dehydrogenase
Delete the previous listing and substitute the following:

'Pgd1 [{96119}].[Pgd3 {96119}, Pgd-A3 {98156}]. 7AmS {96119}.'v: T. monococcum.

XXVIII. N-Glucosidase.

N{96119}.2AmL.dv: DV92.
N{96119}. dv: DV92.
N {96119}. dv: G3116 (Null).

3. Endosperm storage proteins
I. Glutenins

In the preamble, after the sentence that ends '...the transcribed portionof the gene {255}.', add the following, '(Definitive evidence that subunit21* {98152}, which has a mobility close to that of subunit 21, is a 'x-type'protein rather than a 'y-type' protein has not been obtained, however.)'

After 'Glu-A1s', add

Glu-A1t [{98152}].21* {98152}.v: W29323, W 3879, W 31169.

After 'Glu-A1-1s', add

Glu-A1-1t {98152}. 21* {98152}. v: W29323, W 3879, W 31169.

Glu-A1-1t' is a provisional designation because definitive evidencethat subunit 21*, which has a mobility similar to that of subunit 21, isa 'x-type' and not a 'y-type' protein has not been obtained.

After 'Glu-Ht1', delete the sentence that begins 'The symbol Glu-2,formerly used...' and add the following:

Glu-B2 {98155, 98154}.[XGlu-B2 {98154}].1BS.s: CS*/Cheyenne 1B, Langdon*/T. turgidum var. dicoccoides1B{98154}.

II. Gliadins
Add the following paragraphs at the end of the preamble:

'Recombination was observed within the gliadin multigene family at XGli-A1{98154}. These closely linked genes may correspond to Gli-A1 andGli-A5, but they were temporarily designated XGli-A1.1 andXGli-A1.2 until orthology with Gli-A1 and/or Gli-A5is established.
A number of novel gliadin alleles were reported in {98153}; they will beincluded in the next supplement to the catalogue'.

Add the following comment after Gli-A4: 'Dubcovsky et al. {98154}did not find evidence for the simultaneous presence of both Gli-A3and Gli-A4 in five 1A or 1Am mapping populations and concluded thatGli-A4 should be considered to be Gli-A3 until conclusiveevidence for the former is obtained.'
Gli-B3 was designatedGlu-B2 {420} until the name of the locuswas changed in {792}.

4. Water-soluble proteins

Wsp-D1c {9840}.v: T4 = Agatha {9840,639}; Indis {639,641}.

5. Other proteins

VI. Waxy protein
To first sentence in parenthesis add: '= ADP glucose glycosyl tranferase,EC2.4.1.21 = GBSS.' Change second sentence to 'Waxy proteins, characterisedby starch granules containing increased amylopectin and reduced amylose,are preferred for Japanese white salted or "udon" noodles {9897}.'
Add to preamble: 'Waxy phenotypes are controlled by orthologous genes inbarley, maize and rice, but are not known in rye {9837}.'

Wx-B1b . Add: 'v: For list of Australian wheats,see {9897}.'

VIII. Puroindolines
Puroindolines a and b are the major components of friabilin, a protein complexthat is associated with grain texture (see 'Grain Hardness'). Hard wheatsresult from unique changes in the puroindoline amino acid sequence or (currently)a null form of one of the completely linked genes (max. map distance 4.3cM) {9822}.

Pina-D1a {9822}.5DS {9822}v: CS {9822}; Heron {9823}.
Pina-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats carrying the Pinb-D1b mutation {9822, 9823}.
Pina-D1b {9823}.v: Falcon {9823}; Butte 86 {9823} (null).
Pina-D1b may be present in all hard hexaploid wheats not carrying the Pinb-D1b mutation {9822, 9823}.
Pinb-D1a{9822}.5DS {9822}.v: CS {9822}; Hill 81 {9822}.
Pinb-D1a is present in all soft hexaploid wheats and possibly all hard hexaploid wheats carrying the Pina-D1b mutation {9822,9823}.
Pinb-D1b{9822}.5DS {9823}.s: CS (Cheyenne 5D) {9822}. v: Wanser {9822}.
Pinb-D1b may be present in all hard hexaploid wheats not carrying the Pina-D1b (null) mutation {9822,9823}. Wheats with Pinb-D1b contain a Gly-46 to Ser-46 change in amino acid sequence {9822}.
Wx-B1b . Add: 'v: For list of Australian wheats,see {9897}.'

.

Response to Salinity

Variation in K+/Na+ discrimination ratios correlate with salt tolerance,high ratios being indicative of higher tolerance.

Kna1 {9810}. 4DL {9810}.v: hexaploid wheats {9810}.
T4BS.4BL-4DL {96128}. tv: tr: Various lines {9810}.
T4BS.4BL-4DL-4BL {9811}. tv: tr: Selection 3*5-4 {9811}.
ma: Kna1 was found to be completely linked with Xabc305-4B,Xabc305-4D, Xbcd402-4B, Xbcd402-4D, Xpsr567-4B, Xpsr567-4D,Xwg199-4B and Xwg199-4D in recombined T. turgidum 4B and T.aestivum 4D chromosomes {96128, 9811}.

Response to Tissue Culture

QTL loci mapped include:

Qtcr.ipk-2B.1 [{98110}].[Tcr-B1 {98110}].Is weakly associated with Xpsr102-2B.
Qtcr.ipk-2B.2 [{98110}].[Tcr-B2 {98110}].Is linked closely and distal to Ppd2.
Qtcr.ipk-2B.3 [{98110}].[Tcr-B3 {98110}].Is linked to Yr7/Sr9g.

Response to Vernalization

Vrn-1 {9880}.
Orthologous series in long arms of chromosomes of hom*oeologous Group 5.

Vrn-A1 {9880}. [Vrn1 {829}, Sk {2}]. 5AL {558,633}. i: Triple Dirk {828,829}. s: Kharkov 22MC*/Rescue 5A {243}; Winalta*8/Rescue 5A {626}. Rescue*/Cadet 5A Vrn-D1 Vrn-B1 {860}. v: Cadet {860}; Conley {828}; Diamant II {625}; Falcon {829}; Koga II {1181}; Kolben {1,828,829}; Konosu 25 {315}; Marquis {1}; Reward {828}; Saitama 27 {315}; Saratov 29 {633}; Saratovskaya 29 {635}; Saratovskaya 210 {633}; Shabati Sonora {635}; Thatcher {828}; WW15 {829}. Shortandinka Vrn-B1 {635}; Takari Vrn-B1 {253}. Hope Vrn-B4 {1026}. ma: Vrn-A1 - 7.5cM - Xwg644-5A {9839}.

Cultivars possessing Vrn-A1 are insensitive to vernalization. Vrn-A1 is epistatic to other genes. According to {860}, Vrn-A1 is not always fully dominant and not always epistatic. Kuspira et al. {53l} attributed single gene variation in T. monococcum to the Vrn-A1 locus. Multiple recessive alleles were suggested {531}. Vrn-Am1 was mapped on the long arm of chromosome 5Am closely linked to the same RFLP markers as Vrn-1 {9877}.

Vrn-1 should be orthologous to Vrn-H1 {Sh2/Sgh2} of barley {9839,9873,9874} and Vrn-R1 {Sp1} of rye {9839,9875} based on map locations using common RFLP markers.

Vrn-B1 {9880}. The literature indicates this gene is locatedin chromosome 5BL. Because the previously designated genes Vrn4 andVrn2 are probably the same, or allelic, the listing of informationwill follow earlier formats under the previous synonymns. Stelmakh {1026}doubted the existence of Vrn4.

[Vrn4 {830}]. 5B {635}, 5D {9438}, 5BL {635}. s: Rescue*/Cadet 5A Vrn-A1 Vrn-D1 {635}. v: Mara {1181}; Pirourix 28 {635}. Shortandinka Vrn-A1 {860}.

[Vrn2 {829}, Ss {2}]. 5B {9428,9433}, 5BL or 7BL {9438}. Earlier location of 2B {625} was not correct. i: Triple Dirk B {829}. Brown Schlanstedt {1,2,828,829}; Bersee {396}; Cadet {860}; Festiguay {829}; Milturum 321 {635}; Milturum 553 {635}, Noe {2}; Spica {396}. Borsum Vrn1 {1}; Dala Vrn1 {1}; Diamant 1 Vrn1 {1}; Halland Vrn-A1 {1}; Haruhikari Vrn-A1 {633}; Rubin Vrn-A1 {1}; Triple Dirk Vrn-A1 {830}. Gabo Vrn4 {829}.

In some studies, genotypes were subdivided. Carriers of Vrn2a did not react to 15 and 30 days vernalization. Carriers of Vrn2b showed accelerated heading after 15 and 30 days vernalization {9428,9433}.

[Vrn2a = Vrn2 {9428,9433}]. i: Ank-18 {9428,9433}. s: Saratovskaya 29*8/Mironovskaya 808 {9433}; Saratovskaya 29*8/Odesskaya 51 5A {9433}. v: Pirothrix 28 {9433}. Saratovskaya 29 Vrn-A1 {9433}.

[Vrn2b = Vrn2 {9428,9433}]. s: Diamant 1*8/Mironovskaya 808 5A {9433}; Diamant 1*8/Skorospelka 35 5A {9433}. v: Magali; Milturum 321 {9433}; Milturum 553 {9433}; Ulyanovka 9 {9433}. Diamant 1 Vrn-A1 {9433}; Novosibirksaya 67 Vrn-A1 {9433}.

Vrn-D1 {9880}. [Vrn3 {829}]. 5DL {558,633}.i: Triple Dirk E {829}. s: Rescue*/Cadet 5A Vrn-A1 Vrn4{860}. v: Chinese Spring {829}; Norin 61 {315}; Shinchunaga {315};Shirasagi Komugi {315}; Ushio Komugi {315}. Rescue Vrn-B1 {860}.

Vrn-2 {9877}.
Orthologous series in chromosomes of hom*oeologous group 4. Vrn-Am2 waslocated in T. monococcum {9877} on chromosome 5Am on the 4Am translocatedregion. Vrn-H2 (sh/sgh1) occurs in barley chromosome 4H {9876}and is probably orthologous to Vrn-Am2 based on comparative maps{9877,9874}.

Vrn2a {9877}. Winter habit - dominant in diploid wheat. dv: G1777 {9877}; G3116 {9877}.
Vrn2b {9877}. Spring habit. dv: DV92 {9877}.

Vrn-3 {9880}.
Orthologous series in chromosomes of hom*oeologous group 1 predicted fromorthology with Vrn-H3 (Sh3) in barley chromosome 1H {9876,9878}.Aneuploid and whole chromosome substitution experiments showed that allgroup 1 chromosomes of wheat carry genes affecting response to vernalization{9879}.

Vrn-4 {9880}.
To date, only Vrn-B4 has been detected.

Vrn-B4 {9880}. [Vrn5, eHi {557} {552}]. 7BS{553,557}. The distal region of 7BS has been translocated with a chromosomesegment with hom*oeology to the distal region of 5AL. It is not known ifVrn-4 is located in the region hom*oeologous to 5L or 7S. s:CS*/Hope 7B Vrn-D1 {553}. v: Hope Vrn-A1 {1026}.

References to additional studies are given in {1026}.

StockGenotypeVernalization Response
Triple DirkVrn-A1 vrn-B1 vrn-D1No
KolbenVrn-A1 vrn-B1 vrn-D1No
Festiguay vrn-A1 vrn-B1 vrn-D1Yes
Gabo vrn-A1 vrn-B1 vrn-D1Yes
Chinese Spring vrn-A1 vrn-B1 Vrn-D1Yes

Winter cultivars carry recessive alleles at all loci. Differences amongwinter wheats with respect to vernalization requirements seem to be dueto multiple recessive alleles {830}. Two genes may determine differencesbetween winter wheats requiring 20 days and 60-65 days of vernalization{3l6}.

Restorers for Cytoplasmic Male Sterility

2. Restorers for T. longissimum cytoplasm

Vi {98135}.1B{98136}, 1BS {98137}. v: T. turgidum{98135}.

Probably derived from a cv. Selkirk T. aestivum line with T. cylincricumcytoplasm {98135}.

3. Restorers for photoperiod-sensitive Aegilops crassa cytoplasm

Morai &Tsunewaki {9898} described photoperiod-sensitive CMS causedby Aegilops crassa cytoplasm in bread wheat cv. Norin 26. Almostcomplete sterility occurred when plants were grown in photoperiods of 15hor longer.

Rfd1 {9899}.7BL{9899}.v: Chinese Spring{9899}.

A different system of restoration occurs in cv. Norin 61, where at leastfour chromosomes, 4A, 1D, 3D and 5D, appear to be involved {9899}.

Ribosomal RNA

5S rRNA genes

5S-Rrna-A1
. Add 'v: Chinese Spring {98133}' in the last column.

Add the following comments at the end of the '5SrRNA genes' section:
'The 5S-Rrna-1 loci were physically mapped in 1AS, 1BS, and 1DS andthe 5S-Rrna-2 loci were physically mapped in 5AS, 5BS, and 5DS ofChinese Spring using deletion lines {98133}.
Table 1 in {98134} lists the chromosome or chromosome arm locations of rRNAloci in 12 Triticeae species.'

Pathogenic Disease/Pest Reaction

Reaction to Diuraphis noxia

Dn27DL {98132}.
v: PI262660 {98132}.
ma: XksuA1-7D - 9.8 cM - Dn2 {98132}.
Dn41DL {98132}.v: CORWA1 {9866}; CI2401 {9866}; PI151918 {9866}; PI372129{98132}.
ma: Xabc156-1D - 11.6 cM - Dn4 {98132}
Dn5 i: Palmiet derivative 92RL28 {9623}.
Dn6 v: CI6501 {9866}.

Reaction to Erysiphe graminis

Pm1.
v: Zhengzhou 871124 {9870}.
ma: Co-segregation or close linkage with three RAPDs; one
RAPD converted to a STS {9870}.
Lists in {9883} (Western Siberia).
Pm1a {9862}.
Pm1 {9862}.v: See earlier lists.
Pm1b {9862}.
v: MocZlatka {9862}.
Pm1c {9862}.
Pm18 {1189,9862}.v: M1N (see earlier Pm18).
Pm1d {9862}.
v: T. spelta var duhamelianum TRI2258 {9862}.
Pm2.v: Orestis {98158}.
Pm3.Revise 'ma:' listing to'Pm3 - 3.3 cM - Xwhs179-1A{9650}.'
Pm4b.v: Ronos {98158}.
Pm5.v: Kormoran {98158}.
Pm6.v: co*ker747 {98158}.
Pm8.v: Others: {9809}.
Crosses between three lines with Pm8 and Helami-105, a 1BL.1RSline with Pm17, indicated that Pm8 and Pm17 were allelic{9628}. Earlier, these genes were reported to be genetically independent{1060}.
Su-Pm8. Su-Pm8 occurs at high frequency in CIMMYT-generatedwheats {9863,9809}. Further genotypes are identified in {9865}.
Pm12.T6BS-6SS.6SL {429}.
Pm13.3B {135}, T3BL.3BS-3Sl#1S {9844}. tv: T. longissimum derivative
R1A {136}.
3D {135}, T3DL.3DS-3Sl#1S {9644}. tv: T. longissimum derivative
R1D {136}.
Pm17.T1AL.1RS {9628}v: Amigo {9628}; Century {9894}; TAM107 {9894}; TAM200 {9894};TAM201 {9894}.
Pm18.See Pm1c.ma: RAPD OPH171900 (synonym 'OPH17-1900') was associatedwith Pm21 and RAPD OPH171000 (synonym 'OPH17-1000') with itsabsence {9803}.
Pm21.
Pm24 {9805}.6D {9805}. v: Chiyacao {9805}.
Lists in {9844} (Chinese wheats).
Temporary designations:
PmTmb {9802}. v: NC94-3778 {9802}.
dv: T. monococcum PI427662 {9802}.
ma: Associated with 3 RAPDs {9802}.

Reaction to Fusarium graminearum
Disease : Fusarium head scab (= Fhs).

Fhs1 {9888}.v: Line A {9888}.Ning 7840 Fhs2 {9888}.
Fhs2 {9888}.v: Line B {9888}.Ning 7840 Fhs1 {9888}.

Reaction to Heterodera avenae

Cre1. i: AP = Prins*8/AUS10894 {9845}.
ma: Xglk605-2B - 7.3cM - Cre1 - 8.4cM -
Xcdo588-2B/Xabc451-2B {9845}.

Reaction to Mayetiola destructor

H3.ma: Cosegregation of H3 and a RAPD {98141}.
H5.ma: Cosegregation of H5 and two RAPDs {98141}.
H6.ma: Cosegregation of H6 and three RAPDs {98141}.
H9.ma: Cosegregation of H9 and two RAPDs {98141}.
H10.ma: Cosegregation of H10 and one RAPD and close linkageof H10 to another RAPD {98141}.
H11.ma: Close linkage of H11 to two RAPDs {98141}.
H12.ma: Cosegregation of H12 and one RAPD and close linkageof H12 to another RAPD {98141}.
H13.ma: Cosegregation of H13 and a RAPD {98141}.
H14.ma: Cosegregation of H14and a RAPD {98141}.
H16.
tv: IN80164 {9885}.
ma: Cosegregation of H16 and a RAPD {98141}.
H17.ma: Cosegregation of H17 and a RAPD {98141}.
H19.tv: IN84702 {9885}. PI422297 H29 {9885}.
H23.ma: H23 - 6.9 cM - XksuH4-6D {9815}.
H24.6DL {9815}.ma: H24 - 5.9 cM - Xbcd451-6D/Xcdo482-6D {9815}.
H27 {9836}.4Mv {9836}.su: H-93-33 {9836}.
al: Ae. ventricosa No. 10 {9836};
Ae. ventricosa No. 11 {9836}.
H28 {9886}.5A {9886}. tv: PI59190 {9886}.
H29 {9887}.[H27 {9886}]. 5A {9885}. tv: PI422297 H19 {9885}.

Reaction to Pseudocercosporella herpotrichoides

Phc2. Add '7AL {98144}' in the third column.
ma: Xcdo347-7A (distal) - 11 cM - Pch2 - 18.8 cM -Xwg380- 7A (proximal){98144}.

Temporary Designation:

PchDv {9808}.4V {9808}.ad: Wheat + 4V {9808}.
s: Wheat 4V (group IV) {9808}.

Reaction to Puccinia graminis

Sr21.See also Sr45.
Sr22.i: Others {9817}.
v:
Others {9817}.
ma: Hexaploid derivatives with Sr22 carried "alien"segments of varying lengths; the shortest segment was distal to Xpsr129-7A{9817}.
Sr24.Add 'ma: All lines with Sr24 also possess Lr24; seeLr24.'
Sr25.Add 'Refer to Lr19 for linkage information.'
Sr32.2A {660, 916}, T2AL.2S#1L-2S#1S {9644}.v: C95.24 {9644}.
2B {916}, T2BL/2S#1S {9644}.v: C82.1 = P80-14.1-2 {9644}.
2D {916}, T2DL-2S#1L.2S#1Sv: C82.2 = P80-139.1-4 {9644}.
2D {916}.v: C82.3 = P80-132.2-2 {660,916}; C82.4 =
P80-153.1-2 {660,916}.
Sr34.2D {689}, T2DS-2M#1L.2M#1S {9644}.
2A {689}, T2AS-2M#1L.2M#1S {9644}.
2M {689}.
Sr36. v: Others {9644}.
Sr40.Derived from T. araraticum T2BL/2G#2S {9644}.
Sr45 {9831}.SrD {9832}; SrX {1805}. 1D {9881},1DS {9831}.
v: 87M66-2-1 {9831}. 87M66-5- 6 {9881}Thatcher + Lr21, RL5406 {9831,9832}.
Various backcross derivatives developed at PBI Cobbitty {1058}.

dv: T. tauschii RL5289 {9831,9832}.

Tests of natural and induced mutants of P. graminis f. sp. triticiindicated that Sr45 has identical specificity to Sr21 {9832}.

Reaction to Puccinia recondita

Lr9.T6BS.6BL-6U#1L {9644}.The structures of additional translocations are given in {9644}.
Lr10.
ma: Xcdo426-1A - 5.1cM - Lr10 {9636};
Lr10 - 8 cM -Glu-A3 {9818}.
ma: Completely linked with Lrk10 ,which encodes a protein kinase {9864}.
ma: Cosegregation with Xsfr1(Lrk10) and Xsfrp1(Lrk10) {98106}.
Lr17a {9891}.[Lr17].
Lr17b {9891}.[LrH {9647}, WBR2 {9892}].v: Harrier {9891}; Norin 10 - Brevor, 14 {9891}; Maris Fundin{9891}. Hobbit Sib = Dwarf A Lr13 {9891}.
Lr18.T5BS.5BL-5G#1L {9644}.
Lr19.7BL {9867}.v: 88M22-149 {9867}; L503 {9843}; L513 {9843}; Sunnan {9895}.
ma: Cosegregation with Ep-D1d {9826}.
ma: Prins et al. {9872} studied 29 deletion mutants in Indis to determinethe gene order: Sd-1 - Xpsr105 - Xpsr129 - Lr19 - Wsp- D1 - Sr25 - Y.
Replace the note at the end of the section with 'Knott {489} obtainedtwo mutants (28 and 235) of Agatha possessing Lr19, but with reducedlevels of yellow pigment in the flour. Marais {639,641} obtained mutantsand recombined lines with intermediate levels of, or no, yellow pigment.It was shown that in recombinant line 88M22-149 lacking yellow pigment,Lr19 was transferred to chromosome 7BL {9867}.'
The chromosome with Lr19 in Indis is probably identical to that inAgatha {9872}.
Lr21.v: AC Cora Lr13 {9824}.
Lr22a.v: AC Minto Lr11 Lr13 {9824}.
Lr24.1B {9628}.
v: Amigo {9628}.
ma: Cosegregation with RAPD marker that was converted to a SCAR {9871}.
Lr25.ma: Cosegregation with a RAPD {98130}.
Lr27.ma: Positive association with XksuG53-3B {9636}.
Lr28.T4AS.4AL-7S#2S {9644}.ma: Lr28 was tagged using STS primer OPJ-02378 {9896}.
Lr29.7DL-7e#1L.7Ae#1S {9644}.ma: Cosegregation with two RAPDs {98130}.
Lr31. ma: A positive association with XksuG10-4B {9636}.
Lr43.7DS (98159}.
Lr46 {9821}.1B {9821}.s: Lalbahadur (Pavon 1B) Lr1 {9821}.
v: Pavon F76 Lr1 Lr10 Lr13 {9821}.
Complex genotypes: AC Domain Lr10 Lr16 Lr34 {9859}; GrandinLr2a Lr3 Lr10 Lr13 Lr34 {9627}; Opata 85 Lr10 Lr37 + Lr31Lr34 {9636}; Roblin Lr1 Lr10 Lr13 Lr34 {9824}.
Genotype Lists: {9825} (U.S.A.)

Temporary Symbols:

LrTb {9859}.Adult plant resistance {9859}.v: AC Taber Lr13 Lr14a {9859}.

Reaction to Puccinia striiformis

Yr2.7B {9830}.Yamhill Yr4a {9830}.
Yr3a.1B {9830}.Druchamp {9830}; Stephens {9830}.
Yr3c.1B {9830}.Minister {9830}.
Yr4a.6B {9830}.Vilmorin 23 {9830}. Yamhill Yr2 {9830}.
Yr4b.6B {9830}.Hybrid 46 {9830}.
Yr15.tv: D447 derivatives B1,B2,B9,B10 {9806}.
ma:tv: OPB131420 - 27.1cM - Yr15 - 11.0cM - Nor-B1 {9806}.
Yr26 {9807}.6AS (6AL.6VS) {9807}.v: Yangmai-5 {9807}. Derived from Haynaldia villosa (Daspyrumvillosum).
Yr27 {9889}. [YrSk {9649}]. 2BS {9889}. v: Ciano 79 {9889}; Selkirk {9889}.
Yr27 is present in many CIMMYT wheat lines {9889} and possiblyWebster. Yr27 is closely linked with Lr13 (repulsion).
Yr28 {9890}.4DS {9890}. v: Synthetic = Altar 84/T. tauschii W-219. Synthetic/Opata85 SSD.
dv: T. tauschii W-219 {9890}.
Yr22 was also reported for chromosome 4D but in the absenceof an appropriate single gene stock and the unavailability of avirulentcultures in most laboratories, tests of linkage with Yr28 data areunlikely to be available in the foreseeable future.

Temporary Symbols:

YrDru.5B {9830}.Druchamp {9830}.
YrDru2.6A {9830}.Druchamp {9830}.
YrH46.6A {9830}.Hybrid 46 {9830}.
Not the same gene as YrDru2 {9830}.
YrMin.4A {9830}.Minister {9830}.
YrND.4A {9830}.Nord Desprez {9830}.
May be the same as YrMin {9830}.
YrSte.2B {9830}.Stephens {9830}.
YrSte2.3B {9830}.Stephens {9830}.
YrV23.2B {9830}.Vilmorin {9830}.
Allelic but not the same as YrSte {9830}.
YrYam.4B {9830}.Yamhill {9830}.

Reaction to Pyrenophora tritici-repentis

1. Insensitivity to tan spot toxin
Revise the previous 'ma:' entry to 'Xbcd1030-5B - 5.7 cM - tsn1-16.5 cM - Xwg583-5B {9629).'

Reaction to Schizaphis graminum

Gb5.7S {266}. T7S#1L.7S#1S-7AS {9644}.

Reaction to Tilletia spp.

Bt10.v: Others {9804}.
ma: Bt10 completely linked with a 590 bp fragment producedby UBC primer 196 {9804}. RAPD - 1.5 cM +/- 1.5cM - Bt10 {9829}.

Reaction to Ustilago tritici

Ut-x {98131}. 2BL{98131}.v: Biggar BSR {98131}.
ma: Xcrc4-2B - 14 cM - Ut-x - 10 cM - Xabc153-2B.2{98131}. Xcrc4-2B (synonym 'Xcrc4-2B.2') is a SCAR.

Resistance to colonization by Eriophyes tulipa

Cmc2.6A, T6AS.6Ae#2S {9644}.
5B, T5BL.6Ae#2S {9644}.
v: 875-94-2 {9644}.

Reaction to Wheat Streak Mosaic Virus

Wsm1.4A {9833}, T4AL-2S {266}.v: C1 17766 = B-6-37-1 {266,9833,9834}.
T6AS.4Ai#2L + T6AL-4Ai#2S {9644}.v: CI17883 {9644}.
ma: Wsm1 cosegregated with a STS amplified by the primer
set STSJ15 {9819}.

Seedling Leaf Chlorosis

sc {98157}.3BS{98157}.s: CS*/Hope3B {98157}.
v: Hartog {98157}; Suneca {98157}; wheats with Sr2 {98157}.

Leaf chlorosis is affected by temperature and light and is enhanced by infectionwith pathogens. sc is completely linked with Pbc (pseudo-blackchaff) and Sr2 (reaction to Puccinia graminis).

Temperature-Sensitive Winter Variegation

This phenotype involves reduced vigour and chlorotic patches on leaves ofcertain genotypes in Ae. umbellutata cytoplasm when grown at lowtemperatures {9813}.

Vgw{9893}.Variegation is dominant {9813}. [Vg {9893}]. 5BL {9893}.v: Bersée {9813}; Cappelle- Desprez {9813}; Hobbit Sib{9813}; Mara {9813}.
vgw {9893}.[vg {9893}].v: Besostaya I {9813}; CS {9813}; Poros {9813}; Sava {9813};T. spelta {9813}.

Genetic Linkages

Chromosome 1A
1ASRg3-Hg0{9860}.
Rg3-Gli-A11.01 %+/- 0.56 %{9860}.
Hg-Gli-A12 %+/- 1.14 %{9861}.
0.03 %+/- 0.31 %{9860}.
0.79 %+/- 0.81 %{9861}.
2.24 %+/- 1.31 %{9860}.
2.64 %+/-0 .98 %{9861}.
3.8 %+/- 3.8 %{9861}.
-Gli-A325.17 %+/- 4.27 %{9860}.
-Glu-A1I{9860}.
Gli-A1-Gli-A322.73 %+/- 4.07 %{9860}.
22.42 cM+/- 3.61 cM{9814}.
-Glu-A31.5 cM+/- 0.3 cM{9726}.
-Glu-A1I{9860}.
-Glu-A51.94 cM0.01 cM{9842}.
Glu-A3-Glu-A137.55 %+/- 5.05 %{9860}.
Chromosome 1B
1BSRg1-Gli-B12.84 %+/- 1.39 %{9861}.
-4.05 %+/- 1.52 %{9861}.
-0{9861}.
Glu-B2-XGli-B10{98154}.
1BS & LGlu-B3-Glu-B129.9 cM +/- 6.0 %{98149}.
Chromosome 2A
2ASbh-centromere8.5 cM+/- 2.1 cM{9701}.
Chromosome 2B
2BSLr23-centromere20 cM{9636}.
Chromosome 4B
4BSHl-Pa30 cM{9884}
Chromosome 4D
4DLAlt2-Kna112.5 cM{9757}.
Chromosome 5A
H28-H922 cM{9886}.
H29-H16close{9885}.
Chromosome 5B
5BLcentromere-Ne16 cM{9893}.
Ne1-Vg11 cM{9893}.
Vg-Ibf-B135 cM{9893}.
Chromosome 6A
6ALcentromere-Sr260{9838}.
Chromosome 6B
6BStv: Nor2-Xpsr31224.8 cM{98104}.
tv: Xpsr312-6B-Su15.5 cM{98104}.
tv: Su1-alpha-Amy-19.84 cM{98104}.
Chromosome 7A
7ASXpsr119-7A-or13 cM{9740}.
7ALcn-A1-centromere46.6 cM+/- 3.8 cM{9701}.
Chromosome 7B
7BScc-centromere33.5 cM+/- 4.1 cM{9701}.
7BLcn-B1-centromere42.6 cM+/- 4.3 cM
Chromosome 7D
7DSLr43-centromereI{98159}.

REFERENCES
Amendments.
429
. Revise authors to: Jia J, Devos KM, Chao S, Miller TE, Reader SM& Gale MD.
834. Saidi A & Quick JS. 1996. Inheritance and allelic relationshipsamong Russian wheat aphid resistance genes in winter wheat. Crop Science36(2): 256-258.
1178. Change to '1179'.
9414. Change to '429'.
9419. Riede CR, Williams ND & Miller JD. 1995. Wheat lines monogenicfor resistance to stem rust from the wheat cultivar 'Waldron'. Theoreticaland Applied Genetics 90: 1164-1168.
9501. Qi LL, Chen PD, Liu DJ, Zhou B, Zhang SZ, Shang BQ, Xiang QJ,Duang XY & Zhou YL. 1995. The gene Pm21- a new source for resistanceto wheat powdery mildew. Acta Agriculture Sinica 21: 257-261.
9502. Chromosoma 103: 179-185.
9507. In the 'Reaction to Puccinia striiformis' sectiononly, replace with '9607'.
9546. Change to '9551'.
9617. Plant Breeding 115: 273-275.
9636. Nelson JC, Singh RP, Autrique JE & Sorrells ME. 1997. Mappinggenes conferring and suppressing leaf rust resistance in wheat. Manuscript.
9646. Change to '1061'.
9651. Ren SX, McIntosh RA, Sharp PJ & The TT. 1996. A storageprotein marker associated with the suppressor of Pm8 for powderymildew resistance in wheat. Theoretical and Applied Genetics 93: 1054-1060.
96116. Change to '9507'.
9701. 1997. Journal of Heredity 88: 229-232.
9706. Change to '9686'.
9742. Molecular and General Genetics 254: 584-591.
9743. Change '1997' to '1998'.
9751. Crop Science 37: 1586-1589.
9754. Change '1997' to '1998'.
9757. Euphytica 91: 31-35.

New.
9801
. Ma R, Zheng DS & Fan L. 1996. The crossability percentagesof 96 bread wheat landraces and cultivars from Japan and rye. Euphytica92: 301-306.
9802. Shi AN, Leath S & Murphy JP. 1996. Transfer of a majorgene for powdery mildew resistance from wild einkorn wheat (Triticummonococcum var. boeoticum) to common wheat (Triticum aestivum).Phytopathology 86: 556.
9803. Qi LL, Cao MS, Chen PD, Li EL & Liu DJ. 1996. Identification,mapping, and application of polymorphic DNA associated with resistance genePm21 of wheat. Genome 39: 191-197.
9804. Demeke T, Laroche A & Gaudet DA. 1996. A DNA marker forthe Bt-10 common bunt resistance gene in wheat. Genome 39: 51-55.
9805. Huang XQ, Hsam SLK & Zeller FJ. 1997. Chromosomal locationof genes for resistance to powdery mildew in common wheat (Triticum aestivumL. em. Thell.) 4. Gene Pm24 in Chinese landrace Chiyacao. 1997. Theoreticaland Applied Genetics 95: 950-953.
9806. Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI& Nevo E. 1997. Identification of molecular markers linked to the Yr15stripe rust resistance gene of wheat originated in wild emmer wheat,Triticum dicoccoides. Theoretical and Applied Genetics 95: 622-628.
9807. Jones SS. 1997. Personal communication.
9808. Jones SS. 1997. Personal communication.
9809. Ren SX, McIntosh RA & Lu Z. J. 1997. Genetic suppressionof the cereal rye-derived gene Pm8 in wheat. Euphytica 93: 353-360.
9810. Dvorák J & Gorham J. 1992. Methodology of gene transferby hom*oeologous recombination into Triticum turgidum: Transfer ofK+/Na+ discrimination from Triticum aestivum. Genome 35: 639-646.
9811. Luo M-C, Dubcovsky J, Goyal S & Dvorák J. 1996.Engineering of interstitial foreign chromosome segments containing the K+/Na+selectivity gene Kna1 by sequential hom*oeologous recombination indurum wheat. Theoretical and Applied Genetics 93: 1180-1184.
9812. Asakura N, Nakamura C, & Ohtsuka I. 1997. RAPD markerslined to the nuclear gene from Triticum tiropheevii that conferscompatability with Aegilops squarrosa cytoplasm on alloplasmic durumwheat. Genome 40: 201-210.
9813. Worland AJ & Law CN. 1983. Cytoplasmic variation in wheat.1982 Annual Report, Plant Breeding Institute, Cambridge. Pp. 79-80.
9814. Nieto-Taladriz MT & Carrillo JM. 1996. Complexity of theGli-A3 locus in bread wheat. Plant Breeding 115: 192-194.
9815. Ma ZQ, Gill BS, Sorrells ME & Tanksley SD. 1993. RFLP markerslinked to two Hessian fly-resistance genes in wheat (Triticum aestivumL.) from Triticum tauschii (Coss.) Schmal. Theoretical and AppliedGenetics 85: 750-754.
9816. Tomar SMS & Singh B. 1998. Hybrid chlorosis in wheat xrye crosses. Eupytica 99: 1-4.
9817. Paull JG, Pallotta MA, Langridge P & The TT. 1994. RFLPmarkers associated with Sr22 and recombination between chromosome7A of bread wheat and the diploid species Triticum boeoticum. Theoreticaland Applied Genetics 89: 1039-1045.
9818. Feuillet C, Schachermayr G & Keller B. 1997. Molecularcloning of a new receptor-like kinase gene encoded at the Lr10 diseaseresistance locus of wheat. The Plant Journal 11: 45-52.
9819. Talbert LE, Bruckner PL, Smith LY, Sears R & Martin TJ.1996. Development of PCR markers linked to resistance to wheat streak mosiacvirus in wheat. Theoretical and Applied Genetics 93: 463-467.
9820. Shi AN, Leath S & Murphy JP. 1996. Indentification of amajor gene for powdery mildew resistance from wild einkorn wheat (Triticummonococcum ssp aegilopoides) to common wheat (T. aestivum). Manuscript.
9821. Singh RP. 1997. Personal communication.
9822. Giroux MJ & Morris CF. 1997. A glycine to serine changein puroindoline b is associated with wheat grain hardness and low levelsof starch-surface friabilin. Theoretical and Applied Genetics 95: 857-864
9823. Morris CF & Giroux MJ . 1997. Personal communication.
9824. Kolmer JA. 1997. Virulence in Puccinia recondita f.sp. tritici isolates from Canada to genes for adult plant resistanceto wheat leaf rust. Plant Disease 81: 267-271.
9825. McVey DV & Long DL. 1993. Genes for leaf rust resistancein hard red winter wheat cultivars and parental lines. Crop Science 33:1373-1381.
9826. McMillin DE, Johnson JW & Roberts JJ. 1993. Linkage betweenendopeptidase Ep-Dld and a gene conferring leaf rust resistance (Lr19)in wheat. Crop Science 33: 1201-1203.
9827. Liu JQ & Kolmer JA. 1997. Inheritance of leaf rust resistancein wheat cultivars Grandin and CDC Teal. Plant Disease 81: 505-508.
9828. Hasm SLK & Zeller FJ. 1997. Evidence of allellism betweengenes Pm8 and Pm17 and chromosomal location of powdery mildewand leaf rust resistance genes in the common wheat cultivar 'Amigo'. PlantBreeding 116: 119-122.
9829. Laroche A, Demeke T & Gaudet DA. 1996. Identification ofa DNA fragment linked to the bunt Bt-10 resistance gene and its utilizationfor marker-assisted selection in hexaploid wheat. Canadian Journal of PlantPathology 18: 491.
9830. Chen XM, Jones SS & Line RF. 1996. Chromosomal locationof genes for resistance to Puccinia striiformis in seven wheat cultivarswith resistance genes at the Yr3 and Yr4 loci. Phytopathology86: 1228-1233.
9831. Marais GF. 1997. Personal communication.
9832. McIntosh RA. 1981. A gene for stem rust resistance in non-hom*oeologouschromosomes of hexaploid wheat progenitors. Proceedings XIII InternationalBotanical Congress , Sydney, Australia. Carr DJ (ed.). p. 274.
9833. Liang GH, Wang RC, Niblett CL & Heyne EG. 1979. Registrationof B-6-37-1 wheat germplasm. Crop Science 19: 421.
9834. Wang RC, Barnes EE & Cook LL. 1980. Transfer of wheat streakmosaic virus resistance from Agropyron to hom*oeologous chromosomeof wheat. Cereal Research Communications 8: 2335-339.
9835. Riede, CR, & Anderson, JA. 1996. Linkage of RFLP markersto an aluminum tolerance gene in wheat. Crop Science 36: 905-909.
9836. Delibes A, Del Morala J, Martín-Sanchez JA, Mejias A,Gallego M, Casado D, Sin E & López-Braña I. 1997. Hessianfly-resistance gene transferred from chromosome 4Mv of Aegilops ventricosato Triticum aestivum. Theoretical and Applied Genetics 94: 858-864.
9837. Korzun V, Malyshev S, Voylokov A & Börner A. 1997.RFLP-based mapping of three mutant loci in rye (Secale cereale L.)and their relation to hom*oeologous loci within the Gramineae. Theoreticaland Applied Genetics 95: 468-473.
9838. Prabhakara Rao MV. 1996. Close linkage of the Agropyronelongatum gene Sr26 for stem rust resistance to the centomereof wheat chromosome 6A. Wheat Information Service 82: 8-10.
9839. Korzun V, Roder M, Worland AJ & Börner A. 1997. Intrachromosomalmapping of genes for dwarfing (Rht12) and vernalization response(Vrn1) in wheat using RFLP and microsatellite markers. Plant Breeding116: 227-232.
9840. Marais GF. 1997. Personal communication.
9841. Friebe B, Jellen EN & Gill BS. 1996. Verification of theidentity of the Chinese Spring ditelosomic stocks Dt7DS and Dt7DL. WheatInformation Service 83: 31-32.
9842. Felix I, Martinant JP, Bernard M & Bernard S. 1996. Geneticcharacterization of storage proteins in a set of F1-derived haploid linesin bread wheat. Theoretical and Applied Genetics 92: 340-346.
9843. Sibikeev SN, Kruprov VA, Voronina Sa & Elesin VA. 1996.First report of leaf rust pathotypes virulent on highly effective Lr-genestransferred from Agropyron species to bread wheat. Plant Breeding115: 276-278.
9844. Huang XQ, Hsam SLK & Zeller FJ. 1997. Identification ofpowdery mildew resistance genes in common wheat (Triticum aestivumL. em Thell.). IX. Cultivars, landraces and breeding lines grown in China.Plant Breeding 116: 233-238.
9845. Williams KJ, Fisher JM & Langridge P. 1994. Identificationof RFLP markers linked to the cereal cyst nematode resistance gene (Cre)in wheat. Theoretical and Applied Genetics 89: 927-930.
9846. Faris J. 1997. Personal communication.
9847. Gornicki P, Faris J, King I, Podkowinski J, Gill B & HaselkornR. 1998. Plastid-localized acetyl-CoA carboxylase of bread wheat is encodedby a single gene on each of the three ancestral chromosome sets. Proceedingsof the National Academy of Sciences U.S.A. (In press).
9848. Koba T, Takumi S & Shimada T. 1997. Isolation, identificationand characterization of disomic and translocated barley chromosome additionlines of common wheat. Euphytica 96: 289-296.
9849. Tsujimoto H. 1995. Gametocidal genes in wheat and its relatives.IV Functional relationships between six gametocidal genes. Genome 38: 283-289.
9850. Endo TR. 1982. Gametocidal chromosomes of three Aegilopsspecies in common wheat. Canadian Journal of Genetics and Cytology 24: 201-206.
9851. Maan SS. 1975. Exclusive preferential transmission of an alienchromosome in common wheat. Crop Science 15: 278-292.
9852 Miller TE, Hutchinson J & Chapman V. 1982. Investigationof a preferentially transmitted Aegilops sharonensis chromosome inwheat. Theoretical and Applied Genetics 61: 27-33.
9853. Endo TR. On the Aegilops chromosome having gametocidalaction on common wheat. Proceedings of the 5th International Wheat GeneticsSymposium, New Delhi. Ramanujam, S. (ed.) 306-314.
9854. Endo TR & Tsunewaki K. 1975. Sterility of common wheatwith Aegilops triuncialis cytoplasm. Journal of Heredity 66: 13-18.
9855. Endo TR & Katayama Y. 1978. Finding a selectively retainedchromosome of Aegilops caudata L. in common wheat. Wheat InformationService 47-48: 32-35.
9856. Endo TR. 1988. Induction of chromosome structural changes bya chromosome of Aegilops cylindrica L. in common wheat. Journal ofHeredity 79: 366-370.
9857. Endo TR. 1985. Two types of gametocidal chromosomes of Aegilopssharonensis and Ae. longissima. Japanese Journal of Genetics60: 125-135.
9858. Tsujimoto H. 1994. Two new sources of gametocidal genes fromAegilops longissima and Ae. sharonensis. Wheat InformationService 79: 42-46.
9859. Liu JQ & Kolmer JA. 1997. Genetics of leaf rust resistancein Canadian spring wheats AC Domain and AC Taber. Plant Disease 81: 757-760.
9860. Sobkov TA & Sozinov AA. 1997. (Linkage mapping of the locicontrolling spike morphological traits and seed storage proteins on the1A chromosome in winter common wheats). Tsitologiya i Genetika 31(4): 18-26.
9861. Sobko TA & Sozinov AA. 1993. Genetic control of morphologictraits of a spike and the relationship with allelic variation of markerloci of chromosomes 1A and 1B of winter common wheat. Tsitologiya i Genetika(Eng vers) 27(5): 15-22. Russian version: 15-22.
9862. Hsam SLK, Huang XO, Ernst F, Hartl L & Zeller FJ. 1997.Chromosomal location of genes for resistance to powdery mildew in commonwheat (Triticum aestivum L. em Thell). 5. Alleles at the Pm1locus. Manuscript.
9863. Bimb HP & Johnson R. 1996. Expression of the gene Pm8for powdery mildew resistance in wheat cultivars with the 1BL/1RS translocationwhich carries the gene Yr9 for yellow rust resistance. 1996 Proceedingsof the 9th European Mediterranean Cereal Rusts Powdery Mildews Conference,Lunteren, The Netherlands (Kema GHJ, Niks RE & Daamen RA, eds.) 247.
9864. Keller B, Schachermayr G & Feuillet C. 1996. Molecularcloning of a new receptor-like kinase gene encoded at the Lr10, diseaseresistance locus of wheat. Proceedings of the 9th European and MediterraneanCereal Rusts and Powdery Mildews Conference, Lunteren, The Netherlands (KemaGHJ, Niks RE & Daamen, eds.) pp. 34-36.
9865. Hanusová R, Bartos P & Zeller FJ. 1997. Characterizationof the suppressor gene of powdery mildew resistance gene Pm8 in commonwheat (Triticum aestivum L.) cv. Regina. Journal of Applied Genetics38: 11-17.
9866. Dong H, Quick JS & Zhang Y. 1997. Inheritance and allelismof Russian wheat aphid resistance in several wheat lines. Plant Breeding116: 449-453.
9867. Prins R, Marais GF, Pretorius ZA, Janse BJH & Marais AS.1997. A study of modified forms of the Lr19 translocation of commonwheat. Theoretical and Applied Genetics 95: 424-430.
9868. Prins R & Marais GF. 1997. A genetic study of the gametocidaleffect of the Lr19 translocation of common wheat. Manuscript.
9869. Delhaize E, Craig S, Beaton CD, Bennet RJ, Jagadish VC &Randall PJ. 1993. Aluminim tolerance in wheat (Triticum aestivumL.) 1. Uptake and distribution of aluminum in root species. Plant Physiology103: 685-693.
9870. Hu XY, Ohm HW & Dweikat I. 1997. Identification of RAPDmarkers linked to the gene PM1 for resistance to powdery mildew inwheat. Theoretical and Applied Genetics 94: 832-840.
9871. Dedryver F, Jubier MF, Thouvenin J & Goyeau H. 1996. Molecularmarkers linked to the leaf rust resistance gene Lr24 in differentwheat cultivars. Genome 39: 830-835.
9872. Prins R, Marais GF, Janse BJH, Pretorius ZA & Marais AS.1996. A physical map of the Thinopyrum-derived Lr19 translocation.Genome 39: 1013-1019.
9873. Galiba G, Quarrie SA, Sutka J, Morgounov A & Snape JW.1995. RFLP mapping of the vernalization (Vrn1) and frost resistance(Fr1) genes on chromosome 5A of wheat. Theoretical Applied Genetics90: 1174-1179.
9874. Laurie DA, Pratchett N, Bezant JH & Snape JW. 1995. RFLPmapping of five major genes and eight quantitative trait loci controllingflowering time in a winter x spring barley (Hordeum vulgare L.) cross.Genome 38: 575-585.
9875. Plaschke J, Börner A, Xie DX, Koebner RMD, Schlegel R& Gale MD. 1993. RFLP mapping of genes affecting plant height and growthhabit in rye. Theoretical Applied Genetics 85: 1049-1054.
9876. Takahashi R, Yasuda S. 1971. Genetics of earliness and growthhabit in barley. In: Proc 2nd International Barley Genetics Symposium, NilanRA. (ed) Washington State University Press, pp 388-408.
9877. Dubcovsky J, Lijavetzky D, Appendino L, Tranquilli G &Dvorak JD. 1998. Comparative RFLP mapping of Triticum monococcumgenes controlling vernalization requirement. Theoretical and Applied Genetics.In press.
9879. Law CN, Suarez E, Miller TE & Worland AJ. 1998. The influenceof the group 1 chromosomes of wheat on ear-emergence times and their involvementwith vernalization and day length. Heredity (In press).
9880. Snape JW, Dubcovsky J & Laurie D. 1998. Personal communication.
9881. Marais GF, Potgieter GF, Roux HS & le Roux J. 1994. Anassessment of the variation for stem rust resistance in the progeny of across involving the Triticum species aestivum, turgidum andtauschii. South African Journal of Plants and Soil 11: 15-19.
9882. Worland AJ. 1986. Gibberellic acid insensitive dwarfing genesin southern European wheats. Euphytica 35: 857-866.
9883. Paderina EV, Hsam SLK & Zeller FJ. 1995. Identificationof powdery mildew resistance genes in common wheat (Triticum aestivumL. em Thell.) VII Cultivars grown in Western Siberia. Hereditas 123: 103-107.
9884. Arbuzova VS, Efremova TT, Laikova LI, Maystrenko OI, PopovaOM & Pshenichnikova TA. 1996. The development of precise genetic stocksin two wheat cultivars and their use in genetic analysis. Euphytica 89:11-15.
9885. Ohm HW, Ratcliff RH, Patterson FL & Cambron S. 1997. Resistanceto Hessian fly conditioned by genes H19 and proposed gene H27of durum wheat line PI422297. Crop Science 37: 113-115.
9886. Cebert E, Ohm H, Patterson F, Ratcliff R & Cambron S. 1996.Genetic analysis of Hessian fly resistance in durum wheat. Agronomy Abstracts88: 88.
9887. Ohm HW. 1988a. Personal communication.
9888. Ohm HW. 1988b. Personal communication
9889. McIntosh RA et al. 1998. Personal communication.
9890. Singh RP et al. 1998. Personal communciation
9891. Singh D, Park RF & McIntosh RA. 1998. Personal communication.
9892. Jones ERL & Clifford BC. 1996. Annual Report - U.K. CerealPathogen Virulence survey.
9893. Miura H, Parker BB & Snape JW. 1992. The location of majorgenes associated with quantitative trait loci on chromosome arm 5BL of wheat.Theoretical and Applied Genetics 85: 197-204.
9894. Cox TS. 1991. The contribution of introduced germplasm to thedevelopment of U.S. wheat cultivars. In: Use of Plant Introductions in CultivarDevelopment, Part I, Crop Science Society of America Special PublicationNo. 17, pp. 25-47.
9895. Knott DR. 1989. The Wheat Rusts - Breeding For Resistance.Springer-Verlag, Berlin.
9896. Naik S, Gill KS, Prakasa VS, Gupta VS, Tamhanka SA, Pujar S,Gill BS & Ranjekar PK. 1998. Identification of a STS marker linked tothe Aegilops speltoides - derived leaf rust resistance gene Lr28in wheat. Theoretical and Applied Genetics (In press).
9897. Zhao XC, Batey IL, Sharp PJ, Crosbie G, Barclay I, Wilson R,Morell MK & Appels R. 1998. A single genetic locus associated with starchgranule properties and noodle quality in wheat. Journal of Cereal Science27: 7-13.
9898. Murai K & Tsunewaki K. 1993. Photoperiod-sensitive cytoplasmicmale sterility in wheat with Aegilops crassa cytoplasm. Euphytica67: 41-48.
9899. Murai K. 1997. Genetic analysis of fertility restoration againstphotoperiod-sensitive cytoplasmic male sterility in Triticum aestivumcv. Norin 61. Plant Breeding 116: 592-594.
98101. Korzun V, Balzer H-J, Balzer A, Bäumlein H & BörnerA. 1996. Chromosomal location of three wheat sequences with hom*ology topollen allergen encoding, DNA replication regulating, and DNA (cytosine-5)-methyltransferasegenes in wheat and rye. Genome 39: 1213-1215.
98102. Feuillet C, Schachermayr GM & Keller B. 1997. Molecularcloning of a new receptor-like kinase gene encoded at the Lr10 diseaseresistance locus of wheat. Plant Journal 11: 45-52.
98103. Balzer H-J, Borysiuk L, Meyer H-M, Matzk F & Bäumlein H.1998. A pollen allergen encoding gene is expressed in wheat ovaries. PlantMolecular Biology (In Press).
98104. Krugman T, Levy O, Snape JW, Rubin B, Korol A & Nevo E.1997. Comparative RFLP mapping of the chlorotoluron resistance gene (Su1)in cultivated wheat (Triticum aestivum) and wild wheat (Triticumdicoccoides). Theoretical and Applied Genetics 94: 46-51.
98105. Cadalen T, Boeuf C, Bernard S & Bernard M. 1997. An intervarietalmolecular marker map in Triticum aestivum L. em. Thell. and comparisonwith a map from a wide cross. Theoretical and Applied Genetics 94: 367-377.
98106. Schachermayr GM, Feuillet C & Keller B. 1997. Molecularmarkers for the detection of the wheat leaf rust resistance gene Lr10in diverse genetic backgrounds. Molecular Breeding 3: 65-74.
98107. Rouvès S, Boeuf C, Zwickert-Menteur S, Gautier MF,Joudrier P, Bernard M & Jestin L. 1996. Locating supplementary RFLPmarkers on barley chromosome 7 and synteny with hom*oeologous wheat group5. Plant Breeding 115: 511-513.
98108. Liu B, Segal G, Vega JM, Feldman M & Abbo S. 1997. Isolationand characterization of chromosome-specific DNA sequences from a chromosomearm genomic library of common wheat. Plant Journal 11: 959-965.
98109. Segal G, Liu B, Vega JM, Abbo S, Rodova M & Feldman M.1997. Identification of a chromosome-specific probe that maps within thePh1 deletions in common and durum wheat. Theoretical and AppliedGenetics 94: 968-970.
98110. Ben Amer IM, Korzun V, Worland AJ & Börner A. 1997.Genetic mapping of QTL controlling tissue-culture response on chromosome2B of wheat (Triticum aestivum) in relation to major genes and RFLPmarkers. Theoretical and Applied Genetics 94: 1047-1052.
98111. Pratchett N & Laurie DA. 1994. Genetic map location ofthe barley developmental mutant liguleless in relation to RFLP markers.Hereditas 120: 135-139.
98114. Coe EH & Neuffer MG. 1993. Gene loci and linkage map ofcorn (maize)(Zea mays 2N = 20). In: Genetic maps. (O'Brien SJ ed.).Ed. 6. Cold Spring Harbor Laboratory Press, Cold Spring Harbor: 157-189.
98116. Ahn SN & Tanksley SD. 1993. Comparative linkage maps ofthe rice and maize genomes. Proceeding of the National Academy of Sciences,USA. 90: 7980-7984.
98117. Börner A, Röder MS & Korzun V. 1997. Comparativemolecular mapping of GA insensitive Rht loci on chromosomes 4B and4D of common wheat (Triticum aestivum). Theoretical and Applied Genetics(In Press).
98118. Korzun V, Röder MS, Ganal MW, Worland AJ & Law CN.1997 Genetic analysis of the dwarfing gene (Rht8) in wheat. PartI. Molecular mapping of Rht8 on the short arm of chromosome 2D ofbread wheat (Triticum aestivum). Theoretical and Applied Genetics(In Press).
98119. Korzun V, Börner A, Worland AJ, Law CN & RöderMS. 1997. Application of microsatellite markers to distinguish inter-varietalchromosome substitution lines of wheat (Triticum aestivum L.). Euphytica95: 149-155.
98121. Röder MS, Korzun VN, Gill BS & Ganal MW. 1997. Thephysical mapping of microsatellite markers in wheat. Genome (In Press).
98124. Koluchii VT. 1987. Association

A Database for Triticeae and Avena (2024)

References

Top Articles
Latest Posts
Article information

Author: Kelle Weber

Last Updated:

Views: 5531

Rating: 4.2 / 5 (73 voted)

Reviews: 88% of readers found this page helpful

Author information

Name: Kelle Weber

Birthday: 2000-08-05

Address: 6796 Juan Square, Markfort, MN 58988

Phone: +8215934114615

Job: Hospitality Director

Hobby: tabletop games, Foreign language learning, Leather crafting, Horseback riding, Swimming, Knapping, Handball

Introduction: My name is Kelle Weber, I am a magnificent, enchanting, fair, joyous, light, determined, joyous person who loves writing and wants to share my knowledge and understanding with you.